Interaction of shallow shell with subcritical potential stream

The system of singular integral equations with respect to aerodynamic derivatives is derived to analyze the interaction of the vibrating plate with subcritical gas stream. The pressure and velocity potential satisfy the Bernoulli equation. The velocity potential and pressure are presented in the for...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автор: Аврамов, К. В.
Формат: Стаття
Мова:Russian
Опубліковано: Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України 2015
Теми:
Онлайн доступ:https://journals.uran.ua/jme/article/view/57541
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Energy Technologies & Resource Saving

Репозитарії

Energy Technologies & Resource Saving
Опис
Резюме:The system of singular integral equations with respect to aerodynamic derivatives is derived to analyze the interaction of the vibrating plate with subcritical gas stream. The pressure and velocity potential satisfy the Bernoulli equation. The velocity potential and pressure are presented in the form of linear functions with respect to the generalized coordinates and the generalized velocity. The aerodynamic derivatives meets the Laplas equation. Discrete vortex method is used to solve the system of singular integral equations. Using this method, the system of singular equations is transformed into the large dimension system of linear algebraic equations. The system of ordinary differential equations is derived by assumed- mode method to describe the vibrations of shallow shells. The frequencies of the self- sustained oscillations are compared with the eigenfrequencies to choose the eigenmodes, which are accounted in the expansions of the displacements. The characteristic exponents are calculated to analyze the shell dynamic instability. The influence of the shallow shell curvature and frequency of self-sustained oscillations on the parameters of dynamic instability is analyzed numerically.