Resonance subharmonic vibrations of beam with breathing fatigue crack
The vibrations of the beam with breathing crack are described by the partial differential equation with contact parameter. The quasi linear dynamical system with finite degrees of freedom is obtained to analyze the beam vibrations. In order to obtain this dynamical system the solution is expanded by...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України
2016
|
Теми: | |
Онлайн доступ: | https://journals.uran.ua/jme/article/view/71857 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Energy Technologies & Resource Saving |
Репозитарії
Energy Technologies & Resource SavingРезюме: | The vibrations of the beam with breathing crack are described by the partial differential equation with contact parameter. The quasi linear dynamical system with finite degrees of freedom is obtained to analyze the beam vibrations. In order to obtain this dynamical system the solution is expanded by eigenmodes. The Galerkin method is applied to the partial differential equation, which is described the beam vibration. It is shown, when the stiffness matrix of the beam with crack is symmetric and when it is asymmetric. The multiple scales method is used to analyze the quasilinear dynamical system. The considered dynamical system contains the internal resonance. The second main resonance is analyzed. The system of four autonomous differential equations is obtained. The characteristic exponents of the linearized modulation equations are calculated to analyze stability of the periodic motions. The frequency response at the second principal resonance is obtained. This frequency response describes the system subharmonic vibrations |
---|