Elementary convective cell in incompressible viscous fluid and its parameters
The energy principle of convective structures formation in a layer of viscous incompressible fluid uniformly heated from below is proposed. The energy principle of usage of elementary convective cell of cylindrical shape is proposed and justified. The mathematical model of thermal processes in eleme...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Russian |
Опубліковано: |
Інститут енергетичних машин і систем ім. А. М. Підгорного Національної академії наук України
2016
|
Теми: | |
Онлайн доступ: | https://journals.uran.ua/jme/article/view/78783 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Energy Technologies & Resource Saving |
Репозиторії
Energy Technologies & Resource SavingРезюме: | The energy principle of convective structures formation in a layer of viscous incompressible fluid uniformly heated from below is proposed. The energy principle of usage of elementary convective cell of cylindrical shape is proposed and justified. The mathematical model of thermal processes in elementary convective cell with free boundaries is suggested and analytical solutions for the perturbation of velocity and temperature are obtained. The radial wave numbers for the velocity perturbations and eigenvalues of the problem are determined. It is shown that the spectrum of eigenvaluesis discrete both on the mode of the perturbation and the radial wave number. The expression for the radius of an elementary convective cell is obtained. It shows that the radius value can take discrete quantities that correspond to stable convective states. It is shown that maximum heat transfer occurs at the smallest possible radius value. Experimental investigation of forming the convective cells was carried out. It confirmed the correctness of the theoretical results. |
---|