Розробка способу кількісного визначення складу магнітного нанокомпозиту Ag@Fe3O4
The method for quantitative determination of the components of the Ag@Fe3O4 nanocomposite has been developed; it allows simultaneously determining silver and iron in one sample without the stage of taking the aliquot for individual determinations of these components. The method proposed comprises: t...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
National University of Pharmacy
2016
|
Теми: | |
Онлайн доступ: | https://ophcj.nuph.edu.ua/article/view/ophcj.16.880 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Journal of Organic and Pharmaceutical Chemistry |
Репозитарії
Journal of Organic and Pharmaceutical ChemistryРезюме: | The method for quantitative determination of the components of the Ag@Fe3O4 nanocomposite has been developed; it allows simultaneously determining silver and iron in one sample without the stage of taking the aliquot for individual determinations of these components. The method proposed comprises: the use of a considerably smaller quantity of the substance in the test sample; elimination of the need to prepare and standardize the solution of the indicator for silver determination; reduces the labour intensity of the process by saving time and expensive reagents; eliminates the stage of separation of the mixture components, etc. The basis of the method proposed is two conjugated detection procedures –Ag determination by Volhard’s method and Fe (III) determination in magnetite by the method of iodometry. It has been shown that this method allows determining silver without adding the indicator since the second component is magnetite containing bivalent and trivalent iron. The experiment is performed by the action of nitric acid on the sample of Ag@Fe3O4 powder. The acid, in its turn, helps silver to pass into solution and to oxidize Fe2+ ions to Fe3+ being an indicator in this determination. With the simultaneous presence of silver and iron in one sample at Ÿrst silver is quantiŸed, a pale pink colour of the solution above the precipitate appears only after all the silver has been titrated, that means the completeness of its precipitation. The experiment is completed with determination of Fe (III) by iodometry. To assess the validity of determinations the results have been conŸrmed by instrumental methods that are consistent with the results of the titrimetric method developed for quantitative determination of components in magnetically controlled nanocomposites. The relative error of the titrimetric determination does not exceed 0.1-0.2%. |
---|