Властивості модельних систем для біоремедіації води на основі нанокремнезему

The problem of environmental purification from petroleum pollution today is becoming increasingly topical.To solve this problem, the bioremediation way based on the processes of petroleum products decomposition by means of microorganisms that are capable to oxidize hydrocarbons is the most perspecti...

Full description

Saved in:
Bibliographic Details
Date:2017
Main Authors: Klymenko, N. V., Siora, I. V., Novikova, E. A., Golovan, A. P., Krupskaya, T. V., Turov, V. V.
Format: Article
Language:Russian
Published: Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine 2017
Subjects:
Online Access:https://www.cpts.com.ua/index.php/cpts/article/view/428
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Chemistry, Physics and Technology of Surface

Institution

Chemistry, Physics and Technology of Surface
Description
Summary:The problem of environmental purification from petroleum pollution today is becoming increasingly topical.To solve this problem, the bioremediation way based on the processes of petroleum products decomposition by means of microorganisms that are capable to oxidize hydrocarbons is the most perspective method.The model composite system based on the mixture of nanosilica powders and Saccharomyces cerevisiae yeast cells was created by us to destruct the petroleum products. The purpose of our investigation was to improve the composition of the composite by adding the mineral compounds (KCl – 1.5 %, CuSO4 – 0.3 %, ZnSO4 – 0.4 %, (NH2)2CO – 3.0 %, Ca(H2PO4)2 – 0.35 %) that can increase the efficiency of yeast cells in the destruction of motor oil hydrocarbons and to investigate the pH influence of aqueous media on the bioremediation. In this paper,it has been found that the presence of the mixture of hydrophilic (A-300) and hydrophobic (AM1-300) silicas increases vital activity of yeast cells without of nutrient medium.The results show when the additional source of mineral nutrition is added to the nanocomposite, the 1.4 to 1.2 times increase of yeast gas evolution as well as the 1.7 to 3.3 times biomass growth compared to the blank; and 1.3 to 2 times one compared to the mixture of nanosilica powders without additives was observed.The release of carbon dioxide gas by cells suspension at pH 4.0 was 2 times decreased and 1.5–2 times raised at pH 8.0 compared to the blank.Moreover, gas evolution in the alkaline medium was 3.5 times higher than that in the acidic one. It showed be noted that destruction of motor oil hydrocarbons can be visually observed as gradual destruction of the oil layer on the water surface. Consequently, the experimental results obtained during this research are crucial for the development of new effective methods of water and soil purification from the motor oil pollutants.