Наночастинки гідрофосфату цирконію, армовані слабкокислотним катіонообмінним полімером
Weakly acidic cation exchange resin was modified with nanoparticles of zirconium hydrophosphate. The materials were investigated with methods of standard contact porosimetry and transmission electron microscopy. Both non-aggregated nanoparticles (4–15 nm) and larger formations (from 250 nm to severa...
Збережено в:
| Дата: | 2018 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | Англійська |
| Опубліковано: |
Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine
2018
|
| Теми: | |
| Онлайн доступ: | https://www.cpts.com.ua/index.php/cpts/article/view/452 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Chemistry, Physics and Technology of Surface |
Репозитарії
Chemistry, Physics and Technology of Surface| Резюме: | Weakly acidic cation exchange resin was modified with nanoparticles of zirconium hydrophosphate. The materials were investigated with methods of standard contact porosimetry and transmission electron microscopy. Both non-aggregated nanoparticles (4–15 nm) and larger formations (from 250 nm to several microns) have been found. Single particles in clusters and channels of the polymer depress dissociation of carboxylic groups due to counter-ions (H+) in electric double layer around the particles. This causes transformation of porous structure of the polymer: the contribution of micropores to total porosity increases. These additional selective sites provide stronger interaction of Brilliant Green molecules with the surface in comparison with the pristine polymer. Removal of the dye from deionized water and Ni(II) ions from water containing also hardness ions was studied under dynamic conditions. The composite shows higher break-through capacity than that of the pristine resin. The modifier also facilitates regeneration of the weakly acidic ion-exchanger. |
|---|