Синтез і магнітні характеристики наночастинок залізо-ітрієвого гранату

The method of chemical precipitation in the production of nanocrystals attracts attention due to a lower reaction temperature and a narrower distribution of the size of the synthesized particles. The purpose of this work is to search for and create a highly efficient energy-saving technique for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Gorbyk, P. P., Dubrovin, I. V., Abramov, M. V.
Format: Artikel
Sprache:Ukrainisch
Veröffentlicht: Chuiko Institute of Surface Chemistry National Academy of Sciences of Ukraine 2018
Schlagworte:
Online Zugang:https://www.cpts.com.ua/index.php/cpts/article/view/465
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Chemistry, Physics and Technology of Surface

Institution

Chemistry, Physics and Technology of Surface
Beschreibung
Zusammenfassung:The method of chemical precipitation in the production of nanocrystals attracts attention due to a lower reaction temperature and a narrower distribution of the size of the synthesized particles. The purpose of this work is to search for and create a highly efficient energy-saving technique for the synthesis of Y3Fe5O12 nanocrystals by the method of chemical deposition using microwave radiation, the study on the morphology of crystals and on their magnetic properties.The Y3Fe5O12 nanoparticles were synthesized by the co-precipitation of yttrium and iron(III) hydroxides. We used the effect of microwave electromagnetic radiation of the microwave range on aqueous solutions of precursors to initiate chemical reactions, control nucleation and form new phases. We varied the microwave power from 0.14 to 1.4 kW, changing the duty cycle of the process. The radiation frequency was 2.45 GHz, the process lasted from 6 to 66 minutes. Y3Fe5O12 nanocrystals were obtained by calcining the resulting precipitate in a muffle furnace. A significant fraction of the particles obtained by microwave treatment of the precursor (precipitate) in the microwave oven was spherical. The average diameter of the Y3Fe5O12 nanoparticles obtained after synthesis was ~ 41 nm.The hysteresis loops of the magnetic moment of the samples were measured with a phonor-type vibrational magnetometer. Samples were examined by X-ray diffraction analysis, scanning electron microscopy, and the specific surface area was measured by thermal desorption of nitrogen.The phase composition is established, the structure and morphology of the surface of synthesized nanoparticles is studied. It is shown that the correction of the nanoparticle size can be effectively carried out by means of hydrothermal recrystallization. It has been found that by changing the duration of microwave and / or heat treatment it is possible to obtain nanodispersed material with specified (within certain limits) saturation and coercive force magnetization values. High values of the specific saturation magnetization of the obtained materials show a principal possibility of their application in medicine as magnetic carriers of medicinal products or for magnetic hyperthermia.