ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the c...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
V.I.Vernadsky Institute of General and Inorganic Chemistry
2019
|
| Schlagworte: | |
| Online Zugang: | https://ucj.org.ua/index.php/journal/article/view/30 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Ukrainian Chemistry Journal |
Institution
Ukrainian Chemistry Journal| id |
oai:ojs2.1444248.nisspano.web.hosting-test.net:article-30 |
|---|---|
| record_format |
ojs |
| institution |
Ukrainian Chemistry Journal |
| baseUrl_str |
|
| datestamp_date |
2019-05-27T13:51:55Z |
| collection |
OJS |
| language |
English |
| topic |
electroreduction electrochemical synthesis molten salts carbon nanomaterials. |
| spellingShingle |
electroreduction electrochemical synthesis molten salts carbon nanomaterials. Novoselova, Inessa Kuleshov, Serhii ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| topic_facet |
electroreduction electrochemical synthesis molten salts carbon nanomaterials. electroreduction electrochemical synthesis molten salts carbon nanomaterials. electroreduction electrochemical synthesis molten salts carbon nanomaterials. |
| format |
Article |
| author |
Novoselova, Inessa Kuleshov, Serhii |
| author_facet |
Novoselova, Inessa Kuleshov, Serhii |
| author_sort |
Novoselova, Inessa |
| title |
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| title_short |
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| title_full |
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| title_fullStr |
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| title_full_unstemmed |
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 |
| title_sort |
фізико-хімічні основи електролітичного синтезу вуглецевих наноматеріалів з сольових розплавів. частина 1 |
| title_alt |
PHYSICO-CHEMICAL BASES OF ELECTROLYTIC SYNTHESIS OF CARBON NANOMATERIALS FROM MOLTEN SALTS. Part 1 ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОЛИТИЧЕСКОГО СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ИЗ СОЛЕВЫХ РАСПЛАВОВ. Часть 1 |
| description |
An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. |
| publisher |
V.I.Vernadsky Institute of General and Inorganic Chemistry |
| publishDate |
2019 |
| url |
https://ucj.org.ua/index.php/journal/article/view/30 |
| work_keys_str_mv |
AT novoselovainessa physicochemicalbasesofelectrolyticsynthesisofcarbonnanomaterialsfrommoltensaltspart1 AT kuleshovserhii physicochemicalbasesofelectrolyticsynthesisofcarbonnanomaterialsfrommoltensaltspart1 AT novoselovainessa fizikohimičeskieosnovyélektrolitičeskogosintezauglerodnyhnanomaterialovizsolevyhrasplavovčastʹ1 AT kuleshovserhii fizikohimičeskieosnovyélektrolitičeskogosintezauglerodnyhnanomaterialovizsolevyhrasplavovčastʹ1 AT novoselovainessa fízikohímíčníosnovielektrolítičnogosintezuvuglecevihnanomateríalívzsolʹovihrozplavívčastina1 AT kuleshovserhii fízikohímíčníosnovielektrolítičnogosintezuvuglecevihnanomateríalívzsolʹovihrozplavívčastina1 |
| first_indexed |
2025-09-24T17:43:27Z |
| last_indexed |
2025-09-24T17:43:27Z |
| _version_ |
1849658077431726080 |
| spelling |
oai:ojs2.1444248.nisspano.web.hosting-test.net:article-302019-05-27T13:51:55Z PHYSICO-CHEMICAL BASES OF ELECTROLYTIC SYNTHESIS OF CARBON NANOMATERIALS FROM MOLTEN SALTS. Part 1 ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОЛИТИЧЕСКОГО СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ИЗ СОЛЕВЫХ РАСПЛАВОВ. Часть 1 ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 Novoselova, Inessa Kuleshov, Serhii electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. V.I.Vernadsky Institute of General and Inorganic Chemistry 2019-04-02 Article Article Physical chemistry Физическая xимия Фізична xімія application/pdf https://ucj.org.ua/index.php/journal/article/view/30 10.33609/0041-6045.85.2.2019.69-79 Ukrainian Chemistry Journal; Vol. 85 No. 2 (2019): Ukrainian Chemistry Journal; 69-79 Украинский химический журнал; Том 85 № 2 (2019): Украинский химический журнал; 69-79 Український хімічний журнал; Том 85 № 2 (2019): Український хімічний журнал; 69-79 2708-129X 2708-1281 en https://ucj.org.ua/index.php/journal/article/view/30/12 |