ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1

An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Novoselova, Inessa, Kuleshov, Serhii
Format: Artikel
Sprache:English
Veröffentlicht: V.I.Vernadsky Institute of General and Inorganic Chemistry 2019
Schlagworte:
Online Zugang:https://ucj.org.ua/index.php/journal/article/view/30
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Chemistry Journal

Institution

Ukrainian Chemistry Journal
id oai:ojs2.1444248.nisspano.web.hosting-test.net:article-30
record_format ojs
institution Ukrainian Chemistry Journal
baseUrl_str
datestamp_date 2019-05-27T13:51:55Z
collection OJS
language English
topic electroreduction
electrochemical synthesis
molten salts
carbon nanomaterials.
spellingShingle electroreduction
electrochemical synthesis
molten salts
carbon nanomaterials.
Novoselova, Inessa
Kuleshov, Serhii
ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
topic_facet electroreduction
electrochemical synthesis
molten salts
carbon nanomaterials.
electroreduction
electrochemical synthesis
molten salts
carbon nanomaterials.
electroreduction
electrochemical synthesis
molten salts
carbon nanomaterials.
format Article
author Novoselova, Inessa
Kuleshov, Serhii
author_facet Novoselova, Inessa
Kuleshov, Serhii
author_sort Novoselova, Inessa
title ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
title_short ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
title_full ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
title_fullStr ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
title_full_unstemmed ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1
title_sort фізико-хімічні основи електролітичного синтезу вуглецевих наноматеріалів з сольових розплавів. частина 1
title_alt PHYSICO-CHEMICAL BASES OF ELECTROLYTIC SYNTHESIS OF CARBON NANOMATERIALS FROM MOLTEN SALTS. Part 1
ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОЛИТИЧЕСКОГО СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ИЗ СОЛЕВЫХ РАСПЛАВОВ. Часть 1
description An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition.
publisher V.I.Vernadsky Institute of General and Inorganic Chemistry
publishDate 2019
url https://ucj.org.ua/index.php/journal/article/view/30
work_keys_str_mv AT novoselovainessa physicochemicalbasesofelectrolyticsynthesisofcarbonnanomaterialsfrommoltensaltspart1
AT kuleshovserhii physicochemicalbasesofelectrolyticsynthesisofcarbonnanomaterialsfrommoltensaltspart1
AT novoselovainessa fizikohimičeskieosnovyélektrolitičeskogosintezauglerodnyhnanomaterialovizsolevyhrasplavovčastʹ1
AT kuleshovserhii fizikohimičeskieosnovyélektrolitičeskogosintezauglerodnyhnanomaterialovizsolevyhrasplavovčastʹ1
AT novoselovainessa fízikohímíčníosnovielektrolítičnogosintezuvuglecevihnanomateríalívzsolʹovihrozplavívčastina1
AT kuleshovserhii fízikohímíčníosnovielektrolítičnogosintezuvuglecevihnanomateríalívzsolʹovihrozplavívčastina1
first_indexed 2025-09-24T17:43:27Z
last_indexed 2025-09-24T17:43:27Z
_version_ 1849658077431726080
spelling oai:ojs2.1444248.nisspano.web.hosting-test.net:article-302019-05-27T13:51:55Z PHYSICO-CHEMICAL BASES OF ELECTROLYTIC SYNTHESIS OF CARBON NANOMATERIALS FROM MOLTEN SALTS. Part 1 ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОЛИТИЧЕСКОГО СИНТЕЗА УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ ИЗ СОЛЕВЫХ РАСПЛАВОВ. Часть 1 ФІЗИКО-ХІМІЧНІ ОСНОВИ ЕЛЕКТРОЛІТИЧНОГО СИНТЕЗУ ВУГЛЕЦЕВИХ НАНОМАТЕРІАЛІВ З СОЛЬОВИХ РОЗПЛАВІВ. Частина 1 Novoselova, Inessa Kuleshov, Serhii electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. electroreduction, electrochemical synthesis, molten salts, carbon nanomaterials. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. An analysis of the decomposition potentials of lithium, sodium, potassium, calcium, barium, and magnesium carbonates with different versions of cathode products (elemental carbon, carbon monoxide, metal and carbide) in the range of 300-1900 K showed that for K2CO3 deposition of alkali metal on the cathode is most energetically profitable process at all temperatures. For Na2CO3 it is possible to obtain carbon at T < 1000 K. With temperature increase, the predominant process is the reduction of alkali metal. For Li2CO3, CaCO3, BaCO3, MgCO3 at T < 950 °C carbon deposition will be more advantageous, at higher temperatures reduction up to CO will be more advantageous. The decomposition of CO2 flows at more positive potentials compared with carbonate systems. However, low activity of CO2 in carbonate-containing melts will prevent the significant contribution of this reaction to the electrode process. Thermodynamic calculations of the dependence of the carbon deposition potentials from carbonate anion on the acidity of the melt (concentration of oxide ions) show the possibility of displacing this potential up to 0.8 V by changing the acid-base properties of the melt. On the basis of the analysis of binary phase diagrams, Me–C and MeC–C, criteria for selecting the cathode material for generation of the tubular structure of graphite are established. The diagrams should contain: (1) – solid solutions of C–Me at a temperature of 700–900 °C and sufficient solubility of carbon (up to ~ 1 at.%) in the metal should be observed; (2) – after saturation of the solid solution with carbon, the precipitation (precipitation) of graphite from the metal should occur without the formation of intermediate carbide phases; (3) – in the case of the formation of carbides, the diffusion of carbon in the solid solution С–Ме and in the carbide phase MeС should flow with high speed and quickly reach the concentration of carbon saturation for graphite deposition. V.I.Vernadsky Institute of General and Inorganic Chemistry 2019-04-02 Article Article Physical chemistry Физическая xимия Фізична xімія application/pdf https://ucj.org.ua/index.php/journal/article/view/30 10.33609/0041-6045.85.2.2019.69-79 Ukrainian Chemistry Journal; Vol. 85 No. 2 (2019): Ukrainian Chemistry Journal; 69-79 Украинский химический журнал; Том 85 № 2 (2019): Украинский химический журнал; 69-79 Український хімічний журнал; Том 85 № 2 (2019): Український хімічний журнал; 69-79 2708-129X 2708-1281 en https://ucj.org.ua/index.php/journal/article/view/30/12