ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provide...
Gespeichert in:
| Datum: | 2019 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
V.I.Vernadsky Institute of General and Inorganic Chemistry
2019
|
| Online Zugang: | https://ucj.org.ua/index.php/journal/article/view/70 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Ukrainian Chemistry Journal |
Institution
Ukrainian Chemistry Journal| id |
oai:ojs2.1444248.nisspano.web.hosting-test.net:article-70 |
|---|---|
| record_format |
ojs |
| institution |
Ukrainian Chemistry Journal |
| baseUrl_str |
|
| datestamp_date |
2019-10-02T11:30:12Z |
| collection |
OJS |
| language |
English |
| topic_facet |
Ce-containing catalysts oxidation of alcohols temperature -programmed reaction. |
| format |
Article |
| author |
Brei, Volodymyr Mylin, Artur |
| spellingShingle |
Brei, Volodymyr Mylin, Artur ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| author_facet |
Brei, Volodymyr Mylin, Artur |
| author_sort |
Brei, Volodymyr |
| title |
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| title_short |
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| title_full |
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| title_fullStr |
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| title_full_unstemmed |
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) |
| title_sort |
окиснення спиртів на церій-оксидному каталізаторі: кореляція між енергією активації реакції і хімічним зсувом δ (r13соh) |
| title_alt |
OXIDATION OF ALCOHOLS OVER CERIUM-OXIDE CATALYST: CORRELATION BETWEEN THE ACTIVATION ENERGY OF THE REACTION AND THE CHEMICAL SHIFT δ (R13 COH) ОКИСЛЕНИE СПИРТОВ НА ЦЕРИЙ-ОКСИДНОМ КАТАЛИЗАТОРЕ: КОРРЕЛЯЦИЯ МЕЖДУ ЭНЕРГИЕЙ АКТИВАЦИИ РЕАКЦИИ И ХИМИЧЕСКИМ СДВИГОМ δ (R13СОH) |
| description |
The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. |
| publisher |
V.I.Vernadsky Institute of General and Inorganic Chemistry |
| publishDate |
2019 |
| url |
https://ucj.org.ua/index.php/journal/article/view/70 |
| work_keys_str_mv |
AT breivolodymyr oxidationofalcoholsoverceriumoxidecatalystcorrelationbetweentheactivationenergyofthereactionandthechemicalshiftdr13coh AT mylinartur oxidationofalcoholsoverceriumoxidecatalystcorrelationbetweentheactivationenergyofthereactionandthechemicalshiftdr13coh AT breivolodymyr okisleniespirtovnacerijoksidnomkatalizatorekorrelâciâmežduénergiejaktivaciireakciiihimičeskimsdvigomdr13soh AT mylinartur okisleniespirtovnacerijoksidnomkatalizatorekorrelâciâmežduénergiejaktivaciireakciiihimičeskimsdvigomdr13soh AT breivolodymyr okisnennâspirtívnaceríjoksidnomukatalízatoríkorelâcíâmíženergíêûaktivacííreakcíííhímíčnimzsuvomdr13soh AT mylinartur okisnennâspirtívnaceríjoksidnomukatalízatoríkorelâcíâmíženergíêûaktivacííreakcíííhímíčnimzsuvomdr13soh |
| first_indexed |
2025-09-24T17:43:31Z |
| last_indexed |
2025-09-24T17:43:31Z |
| _version_ |
1849658080849035264 |
| spelling |
oai:ojs2.1444248.nisspano.web.hosting-test.net:article-702019-10-02T11:30:12Z OXIDATION OF ALCOHOLS OVER CERIUM-OXIDE CATALYST: CORRELATION BETWEEN THE ACTIVATION ENERGY OF THE REACTION AND THE CHEMICAL SHIFT δ (R13 COH) ОКИСЛЕНИE СПИРТОВ НА ЦЕРИЙ-ОКСИДНОМ КАТАЛИЗАТОРЕ: КОРРЕЛЯЦИЯ МЕЖДУ ЭНЕРГИЕЙ АКТИВАЦИИ РЕАКЦИИ И ХИМИЧЕСКИМ СДВИГОМ δ (R13СОH) ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) Brei, Volodymyr Mylin, Artur Ce-containing catalysts, oxidation of alcohols, temperature -programmed reaction. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. V.I.Vernadsky Institute of General and Inorganic Chemistry 2019-08-15 Article Article Physical chemistry Физическая xимия Фізична xімія application/pdf https://ucj.org.ua/index.php/journal/article/view/70 10.33609/0041-6045.85.8.2019.66-72 Ukrainian Chemistry Journal; Vol. 85 No. 8 (2019): Ukrainian Chemistry Journal; 66-72 Украинский химический журнал; Том 85 № 8 (2019): Украинский химический журнал; 66-72 Український хімічний журнал; Том 85 № 8 (2019): Український хімічний журнал; 66-72 2708-129X 2708-1281 en https://ucj.org.ua/index.php/journal/article/view/70/45 |