ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)

The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Brei, Volodymyr, Mylin, Artur
Format: Artikel
Sprache:English
Veröffentlicht: V.I.Vernadsky Institute of General and Inorganic Chemistry 2019
Online Zugang:https://ucj.org.ua/index.php/journal/article/view/70
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Ukrainian Chemistry Journal

Institution

Ukrainian Chemistry Journal
id oai:ojs2.1444248.nisspano.web.hosting-test.net:article-70
record_format ojs
institution Ukrainian Chemistry Journal
baseUrl_str
datestamp_date 2019-10-02T11:30:12Z
collection OJS
language English
topic_facet Ce-containing catalysts
oxidation of alcohols
temperature -programmed reaction.
format Article
author Brei, Volodymyr
Mylin, Artur
spellingShingle Brei, Volodymyr
Mylin, Artur
ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
author_facet Brei, Volodymyr
Mylin, Artur
author_sort Brei, Volodymyr
title ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
title_short ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
title_full ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
title_fullStr ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
title_full_unstemmed ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH)
title_sort окиснення спиртів на церій-оксидному каталізаторі: кореляція між енергією активації реакції і хімічним зсувом δ (r13соh)
title_alt OXIDATION OF ALCOHOLS OVER CERIUM-OXIDE CATALYST: CORRELATION BETWEEN THE ACTIVATION ENERGY OF THE REACTION AND THE CHEMICAL SHIFT δ (R13 COH)
ОКИСЛЕНИE СПИРТОВ НА ЦЕРИЙ-ОКСИДНОМ КАТАЛИЗАТОРЕ: КОРРЕЛЯЦИЯ МЕЖДУ ЭНЕРГИЕЙ АКТИВАЦИИ РЕАКЦИИ И ХИМИЧЕСКИМ СДВИГОМ δ (R13СОH)
description The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed.
publisher V.I.Vernadsky Institute of General and Inorganic Chemistry
publishDate 2019
url https://ucj.org.ua/index.php/journal/article/view/70
work_keys_str_mv AT breivolodymyr oxidationofalcoholsoverceriumoxidecatalystcorrelationbetweentheactivationenergyofthereactionandthechemicalshiftdr13coh
AT mylinartur oxidationofalcoholsoverceriumoxidecatalystcorrelationbetweentheactivationenergyofthereactionandthechemicalshiftdr13coh
AT breivolodymyr okisleniespirtovnacerijoksidnomkatalizatorekorrelâciâmežduénergiejaktivaciireakciiihimičeskimsdvigomdr13soh
AT mylinartur okisleniespirtovnacerijoksidnomkatalizatorekorrelâciâmežduénergiejaktivaciireakciiihimičeskimsdvigomdr13soh
AT breivolodymyr okisnennâspirtívnaceríjoksidnomukatalízatoríkorelâcíâmíženergíêûaktivacííreakcíííhímíčnimzsuvomdr13soh
AT mylinartur okisnennâspirtívnaceríjoksidnomukatalízatoríkorelâcíâmíženergíêûaktivacííreakcíííhímíčnimzsuvomdr13soh
first_indexed 2025-09-24T17:43:31Z
last_indexed 2025-09-24T17:43:31Z
_version_ 1849658080849035264
spelling oai:ojs2.1444248.nisspano.web.hosting-test.net:article-702019-10-02T11:30:12Z OXIDATION OF ALCOHOLS OVER CERIUM-OXIDE CATALYST: CORRELATION BETWEEN THE ACTIVATION ENERGY OF THE REACTION AND THE CHEMICAL SHIFT δ (R13 COH) ОКИСЛЕНИE СПИРТОВ НА ЦЕРИЙ-ОКСИДНОМ КАТАЛИЗАТОРЕ: КОРРЕЛЯЦИЯ МЕЖДУ ЭНЕРГИЕЙ АКТИВАЦИИ РЕАКЦИИ И ХИМИЧЕСКИМ СДВИГОМ δ (R13СОH) ОКИСНЕННЯ СПИРТІВ НА ЦЕРІЙ-ОКСИДНОМУ КАТАЛІЗАТОРІ: КОРЕЛЯЦІЯ МІЖ ЕНЕРГІЄЮ АКТИВАЦІЇ РЕАКЦІЇ І ХІМІЧНИМ ЗСУВОМ δ (R13СОH) Brei, Volodymyr Mylin, Artur Ce-containing catalysts, oxidation of alcohols, temperature -programmed reaction. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. The oxidation of thirteen alcohols over sup-ported CeO2/Al2O3 catalyst with 10 wt.% of CeO2 have been studied using a desorption mass-spec-trometry technique. A catalyst sample 4–6 mg in quartz cuvette was evacuated at 100 0C, cooled to room temperature, and then adsorption of a alco-hol was provided. After vacuumation of alcohol excess, the TPR profiles of products of alcohol oxidation were recorded at sweep rate 2 a.u.m./sec and heating rate of 15 0C/min using MX-7304A monopole mass- spectrometer. Identification of formed aldehydes and ketones was provided on the bases of their characteristic ions in obtained mass-spectra, namely, acetaldehyde (m/e = 29, 44); pro-panal (29, 58); acetone (43, 58); butanal (44, 43); methyl propanal (43, 41, 72), 2-butanon (43, 72); methoxyacetone (45, 43); cyclohexanone (55); ace-tophenone (105, 77); benzaldehyde (77, 106). It was shown that the oxidation of several alcohols pro-ceeds in a wide temperature interval from 130 to 280 0C. So, peak of formaldehyde formation from me-thanol adsorbed on CeO2/Al2O3 is observed at 280 0C whereas peaks of methyl glyoxal and water formation from adsorbed hydroxyacetone are re-corded at 135 0 C. The linear correlation between activation energy of reaction and chemical shift δ (R13COH) of studied alcohols was found as Ea= 183 –1.4δ (kJ/mol). Respectively, the maximum oxi-dation rate, for instance, for methanol (50 ppm) is observed at 280 0C, for ethanol (58 ppm) at 215 0C, for n-butanol (62 ppm) at 200 0C, for n-propanol (64 ppm) at 190 0C, for 2-butanol (69 ppm) at 160 0C, for hydroxyacetone (69 ppm) at 135 0C, and for 1-phenylethanol (70 ppm) at 130 0C. Thus, ability of alcohols to oxidation decreases with increase of their electronic density on carbon atom of alcohol group in following order: 1-phenyl ethanol ≈ hyd-roxyacetone ≈ cyclohexanol > allyl alcohol ≈ 2-bu-anol ≈ i-butanol ≈ i-propanol > methoxypropanol-2 ≈ n-propanol ≈ n-butanol ≈ benzyl alcohol ≈ ethanol >> methanol. On an example of ethanol, the scheme of alcohol oxidation on ceria that assumes the addition of atomic oxygen to C–H bond of alcoho-lic group with intermediate acetaldehyde hydrate formation is discussed. V.I.Vernadsky Institute of General and Inorganic Chemistry 2019-08-15 Article Article Physical chemistry Физическая xимия Фізична xімія application/pdf https://ucj.org.ua/index.php/journal/article/view/70 10.33609/0041-6045.85.8.2019.66-72 Ukrainian Chemistry Journal; Vol. 85 No. 8 (2019): Ukrainian Chemistry Journal; 66-72 Украинский химический журнал; Том 85 № 8 (2019): Украинский химический журнал; 66-72 Український хімічний журнал; Том 85 № 8 (2019): Український хімічний журнал; 66-72 2708-129X 2708-1281 en https://ucj.org.ua/index.php/journal/article/view/70/45