ПРОГНОЗУВАННЯ ПРОЦЕСІВ ВИСОКОВОЛЬТНОГО ЕЛЕКТРОРОЗРЯДНОГО СИНТЕЗУ КАРБІДУ ТИТАНУ ІЗ ВИКОРИСТАННЯМ МЕТОДІВ МАШИННОГО НАВЧАННЯ
The surfaces of the plasma temperature distribution in the discharge channel, the values of the pressure in the discharge channel, the pressure on the chamber wall, the amount of titanium carbide formed during processing depending on the interelectrode gap and the number of pulses are obtained by ma...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Институт сверхтвердых материалов им. В. Н. Бакуля Национальной академии наук Украины
2023
|
| Schlagworte: | |
| Online Zugang: | http://altis-ism.org.ua/index.php/ALTIS/article/view/279 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Tooling materials science |
Institution
Tooling materials science| Zusammenfassung: | The surfaces of the plasma temperature distribution in the discharge channel, the values of the pressure in the discharge channel, the pressure on the chamber wall, the amount of titanium carbide formed during processing depending on the interelectrode gap and the number of pulses are obtained by mathematical modeling using machine learning methods for spark discharge at the concentration of titanium powder in kerosene of 0.07 kg / dm3, the pulse repetition frequency of 0.3 Hz and the energy of single impact of 1 kJ. The possibility of using machine learning methods to predict the processes and results of high-voltage electric discharge treatment of titanium powder in kerosene using spark discharge and the need to consider other, more accurate machine learning algorithms, are shown.
Key words: titanium carbide, high voltage electric discharge, plasma, kerosene, machine learning, logistic regression, Random forest method. |
|---|