РОЛЬ ВЗАЄМОДІЇ МІЖ ПУХЛИННИМИ ТА ЕНДОТЕЛІАЛЬНИМИ КЛІТИНАМИ В РОСТІ ТА МЕТАСТАЗУВАННІ ЗЛОЯКІСНОЇ ПУХЛИНИ

Summary. Background: It is known that interactions between tumor and endothelial cells have a significant influence on the growth and metastasis of malignant tumors. Aim: To study the reciprocal effect of Lewis lung carcinoma (LLC) and endothelial cells on the growth rate of each other upon their co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Pyaskovskaya, O.N., Kolesnik, D.L., Garmanchouk, L.V., Yanish, Yu.V., Solyanik, G.I.
Format: Artikel
Sprache:English
Veröffentlicht: PH Akademperiodyka 2023
Schlagworte:
Online Zugang:https://exp-oncology.com.ua/index.php/Exp/article/view/2021-2-11
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Experimental Oncology

Institution

Experimental Oncology
Beschreibung
Zusammenfassung:Summary. Background: It is known that interactions between tumor and endothelial cells have a significant influence on the growth and metastasis of malignant tumors. Aim: To study the reciprocal effect of Lewis lung carcinoma (LLC) and endothelial cells on the growth rate of each other upon their co-cultivation in vitro and to assess the contribution of such tumor/endothelial cell crosstalk to in vivo LLC growth and metastasis. Materials and Methods: Two variants of Lewis lung carcinoma cells, high-metastatic (LLC) and low-metastatic (LLC/R9), and murine aorta endothelial cell line (MAEC) were used. Kinetics of tumor cell growth in vitro and in vivo, electrokinetic properties of tumor cells and their adhesion to endothelial monolayer, and the number of tumor and endothelial viable cells after 1-day contact or non-contact co-cultivation were estimated. Results: LLC/R9 had significantly higher growth rate in vivo (as opposed to in vitro) than LLC. However, the number and volume of lung metastatic lesions in LLC/R9-bearing mice were 4.5-fold (p < 0.05) and 3.6-fold lower (p < 0.05), respectively, compared to those in LLC-bearing mice. Non-contact co-cultivation of LLC/R9 + MAEC caused more than a 34% (p < 0.05) LLC/R9-induced increase in the number of MAEC and a 60% (p < 0.05) MAEC-induced increase in the number of LLC/R9 cells as compared to those of corresponding controls (cells cultured alone). In contrast, in the case of LLC + MAEC, both the number of LLC and MAEC cells after their non-contact co-cultivation and cultivation alone did not differ significantly. Contact co-cultivation LLC+MAEC (in contrast to LLC/R9+MAEC) caused more than a 50% (p < 0.01) LLC-induced decrease in the number of MAEC and a 50% decrease (p < 0.05) MAEC-induced in the number of LLC cells as compared to the corresponding controls. Both tumor cell variants showed a bimodal distribution of cells by ζ-potential, but in the case of LLC there was observed a shift towards high values due to 52% of cells with a surface charge density > 10 C/m2, while in the case of LLC/R9 such a subpopulation was absent and 19% of cells had a surface charge < 5 C/m2. The number of LLC cells that adhered to the monolayer of endothelial cells was by 65% (p < 0.05) higher than that of LLC/R9 cells. Conclusion. Obtained data demonstrated that the tumor/endothelial cell relationships might reflect the features of tumor growth and metastasis of a malignant tumor.