Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень

Introduction Forest condition monitoring in Ukraine was initiated in the late 1990s as a part of the URIFFM research activities by methods harmonized with the UN-ECE ICP Forest I level methodology. Since 2000, forest condition monitoring has been conducted at the national level. It is an integral pa...

Full description

Saved in:
Bibliographic Details
Date:2019
Main Authors: Buksha, I. F., Buksha, M. I., Pyvovar, T. S.
Format: Article
Language:Ukrainian
Published: Ukrainian Research Institute of Forestry and Forest Melioration named after G. M. Vysotsky (URIFFM) 2019
Subjects:
Online Access:https://forestry-forestmelioration.org.ua/index.php/journal/article/view/212
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Forestry and Forest Melioration

Institution

Forestry and Forest Melioration
_version_ 1856543401239904256
author Buksha, I. F.
Buksha, M. I.
Pyvovar, T. S.
author_facet Buksha, I. F.
Buksha, M. I.
Pyvovar, T. S.
author_sort Buksha, I. F.
baseUrl_str
collection OJS
datestamp_date 2019-12-09T07:34:43Z
description Introduction Forest condition monitoring in Ukraine was initiated in the late 1990s as a part of the URIFFM research activities by methods harmonized with the UN-ECE ICP Forest I level methodology. Since 2000, forest condition monitoring has been conducted at the national level. It is an integral part of the state environmental monitoring system of Ukraine and is also ensured by Ukraine’s international obligations. According to the decision of the National Security and Defense Council of Ukraine dated 25.04.2013, it is necessary to optimize the environmental monitoring networks. The aim of the study was to conduct a comparative analysis of the monitoring results for the full and sparse grids and to assess the level of representativeness of the sparse grid for the forest condition monitoring in Ukraine. Materials and Methods The data source was Ukrainian forest monitoring database with plots’ coordinates and survey results for years 2013 and 2015. The existing forest monitoring grid (5 ? 5 km, full grid) covers all administrative regions of Ukraine. By means of Q-GIS a sparse grid (15 ? 15 km) was designed as a subsample of the full grid in Ukraine. We compared the distribution of monitoring plots by forest condition types and tree species generally for Ukraine, as well as by natural zones by means of the ?2 method for both grids, and with the data of the forest fund database of Ukraine as of 2011. The ?2 method evaluated the coverage of areas, the tree species representation and the distribution of sample trees by standard defoliation classes (0 class (healthy trees, 0–10% defoliation), 1 class (11–25%), 2 class (26–60%), 3 class (61–99%), 4 class (100%)) for both grids. Results The I level forest monitoring grid covers all natural zones in Ukraine in proportion to the forested area. The full grid consists of 1,457 plots; the sparse grid includes 383 of them. Both grids cover 20 types of forest site conditions, the distribution of tree species does not significantly differ. At the same time, the total number of the monitoring plots, and therefore, actual expenditures, are reduced by more than 50%. Both grids are representative of the Forest Steppe and Polissia (Forests) zones but are not representative for other natural zones (Steppe, Carpathian, and Crimea). At the full grid 33,773 sample trees of 58 tree species are estimated annually. As for the sparse grid, the number of trees will be reduced to 8,890 (37 tree species) there. The 15 most represented species make 96.6% of all sample trees. The representation of tree species in the sparse grid is not significantly different from that in the full one. Comparisons of tree species distribution by standard defoliation classes and age groups by the ?2 method showed that the sparse grid does not significantly differ from the full one for these groups (except for the beech tree). The reporting, which will be provided on the basis of monitoring data on the sparse grid, will accurately reflect the general condition of forests in Ukraine. We found that the average defoliation values of most tree species and groups in the sparse grid were not significantly different from the full one (p = 0.05) (except Qurcus robur and Q. petrea, Fagus sylvatica, Abies alba and Robinia pseudoacacia). As the average defoliation is important in studying the dynamics, when implementing the sparse grid, the analysis will be performed for the plots which it includes only, and, accordingly, the differences (between the full and sparse grids) will not affect trends. Conclusions Designed sparse I level forest monitoring grid (15 ? 15 km) as a subsample of the full grid does not significantly differ from the latter in terms of its coverage of the natural zones, forest condition types and tree species composition. Observations at the sparse grid enable estimating the average defoliation rate, as well as standard reports on the distribution of sample trees by defoliation classes at the national level. The sparse grid usage allows reducing the actual cost of forest monitoring by more than 50%. The proposed sparse grid of monitoring plots can be used to optimize the density of forest monitoring grid currently applied in Ukraine. However, when taking a final decision on optimization, experts should bear in mind that the forest monitoring data in sparse grid is not representative for the Steppe, Carpathians and Mountain Crimea zones, and is totally representative for Forest-Steppe and Polissia. Therefore, when optimizing forest monitoring in the Steppe, Carpathians and Mountain Crimea natural zones it is recommended to keep the already existed density of monitoring plots. 2 Figs., 9 Tables, 23 Refs.
first_indexed 2026-02-08T08:02:38Z
format Article
id oai:ojs2.forestry-forestmelioration.org.ua:article-212
institution Forestry and Forest Melioration
language Ukrainian
last_indexed 2026-02-08T08:02:38Z
publishDate 2019
publisher Ukrainian Research Institute of Forestry and Forest Melioration named after G. M. Vysotsky (URIFFM)
record_format ojs
spelling oai:ojs2.forestry-forestmelioration.org.ua:article-2122019-12-09T07:34:43Z Data representativity assessment for monitoring of Ukrainian forests at various permanent plot densities Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень Buksha, I. F. Buksha, M. I. Pyvovar, T. S. forest monitoring, grid of I Level plots, UN-ECE ICP Forest, defoliation, types of forest site condition, representativeness assessment моніторинг лісів, мережа ділянок І рівня, UN-ECE ICP Forest, дефоліація, типи лісорослинних умов, оцінка репрезентативності Introduction Forest condition monitoring in Ukraine was initiated in the late 1990s as a part of the URIFFM research activities by methods harmonized with the UN-ECE ICP Forest I level methodology. Since 2000, forest condition monitoring has been conducted at the national level. It is an integral part of the state environmental monitoring system of Ukraine and is also ensured by Ukraine’s international obligations. According to the decision of the National Security and Defense Council of Ukraine dated 25.04.2013, it is necessary to optimize the environmental monitoring networks. The aim of the study was to conduct a comparative analysis of the monitoring results for the full and sparse grids and to assess the level of representativeness of the sparse grid for the forest condition monitoring in Ukraine. Materials and Methods The data source was Ukrainian forest monitoring database with plots’ coordinates and survey results for years 2013 and 2015. The existing forest monitoring grid (5 ? 5 km, full grid) covers all administrative regions of Ukraine. By means of Q-GIS a sparse grid (15 ? 15 km) was designed as a subsample of the full grid in Ukraine. We compared the distribution of monitoring plots by forest condition types and tree species generally for Ukraine, as well as by natural zones by means of the ?2 method for both grids, and with the data of the forest fund database of Ukraine as of 2011. The ?2 method evaluated the coverage of areas, the tree species representation and the distribution of sample trees by standard defoliation classes (0 class (healthy trees, 0–10% defoliation), 1 class (11–25%), 2 class (26–60%), 3 class (61–99%), 4 class (100%)) for both grids. Results The I level forest monitoring grid covers all natural zones in Ukraine in proportion to the forested area. The full grid consists of 1,457 plots; the sparse grid includes 383 of them. Both grids cover 20 types of forest site conditions, the distribution of tree species does not significantly differ. At the same time, the total number of the monitoring plots, and therefore, actual expenditures, are reduced by more than 50%. Both grids are representative of the Forest Steppe and Polissia (Forests) zones but are not representative for other natural zones (Steppe, Carpathian, and Crimea). At the full grid 33,773 sample trees of 58 tree species are estimated annually. As for the sparse grid, the number of trees will be reduced to 8,890 (37 tree species) there. The 15 most represented species make 96.6% of all sample trees. The representation of tree species in the sparse grid is not significantly different from that in the full one. Comparisons of tree species distribution by standard defoliation classes and age groups by the ?2 method showed that the sparse grid does not significantly differ from the full one for these groups (except for the beech tree). The reporting, which will be provided on the basis of monitoring data on the sparse grid, will accurately reflect the general condition of forests in Ukraine. We found that the average defoliation values of most tree species and groups in the sparse grid were not significantly different from the full one (p = 0.05) (except Qurcus robur and Q. petrea, Fagus sylvatica, Abies alba and Robinia pseudoacacia). As the average defoliation is important in studying the dynamics, when implementing the sparse grid, the analysis will be performed for the plots which it includes only, and, accordingly, the differences (between the full and sparse grids) will not affect trends. Conclusions Designed sparse I level forest monitoring grid (15 ? 15 km) as a subsample of the full grid does not significantly differ from the latter in terms of its coverage of the natural zones, forest condition types and tree species composition. Observations at the sparse grid enable estimating the average defoliation rate, as well as standard reports on the distribution of sample trees by defoliation classes at the national level. The sparse grid usage allows reducing the actual cost of forest monitoring by more than 50%. The proposed sparse grid of monitoring plots can be used to optimize the density of forest monitoring grid currently applied in Ukraine. However, when taking a final decision on optimization, experts should bear in mind that the forest monitoring data in sparse grid is not representative for the Steppe, Carpathians and Mountain Crimea zones, and is totally representative for Forest-Steppe and Polissia. Therefore, when optimizing forest monitoring in the Steppe, Carpathians and Mountain Crimea natural zones it is recommended to keep the already existed density of monitoring plots. 2 Figs., 9 Tables, 23 Refs. Засобами Q-GIS побудовано розріджену мережу ділянок моніторингу лісів І рівня відповідно до вимог міжнародної програми UN-ECE ICP Forest щільністю 15 ? 15 км як підвибірку повної мережі. Оцінено репрезентативність мережі в межах природних зон, областей, типів лісорослинних умов і деревостанів. Проведено порівняння розподілів дерев головних порід за класами дефоліації, які прийняті для міжнародної та національної звітності з моніторингу лісів, а також значень середньої дефоліації головних порід для обох мереж. Встановлено, що розріджена мережа ділянок моніторингу лісів І рівня достовірно не відрізняється від повної на рівні країни, а також у двох природних зонах – Поліссі та Лісостепу. Спостереження в розрідженій мережі дають змогу з належним рівнем точності оцінювати стан лісів за показником середньої дефоліації та за розподілом дерев головних лісоутворювальних порід у межах класів дефоліації. Проведення спостережень на розрідженій мережі дасть можливість зменшити фактичні витрати на здійснення моніторингу лісів більш ніж на 50 %. Для всіх ділянок розрідженої мережі зберігається увесь часовий ряд попередніх спостережень, що дає змогу відстежувати довгострокову динаміку показників моніторингу лісів. Ukrainian Research Institute of Forestry and Forest Melioration named after G. M. Vysotsky (URIFFM) 2019-11-26 Article Article application/pdf https://forestry-forestmelioration.org.ua/index.php/journal/article/view/212 10.33220/1026-3365.134.2019.66 Forestry and Forest Melioration; No. 134 (2019): Forestry and Forest Melioration; 66-77 Лісівництво і Агролісомеліорація; № 134 (2019): Лісівництво і Агролісомеліорація; 66-77 2663-4147 1026-3365 10.33220/1026-3365.134.2019 uk https://forestry-forestmelioration.org.ua/index.php/journal/article/view/212/200
spellingShingle моніторинг лісів
мережа ділянок І рівня
UN-ECE ICP Forest
дефоліація
типи лісорослинних умов
оцінка репрезентативності
Buksha, I. F.
Buksha, M. I.
Pyvovar, T. S.
Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title_alt Data representativity assessment for monitoring of Ukrainian forests at various permanent plot densities
title_full Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title_fullStr Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title_full_unstemmed Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title_short Оцінка репрезентативності даних моніторингу лісів України за різної щільності мережі ділянок спостережень
title_sort оцінка репрезентативності даних моніторингу лісів україни за різної щільності мережі ділянок спостережень
topic моніторинг лісів
мережа ділянок І рівня
UN-ECE ICP Forest
дефоліація
типи лісорослинних умов
оцінка репрезентативності
topic_facet forest monitoring
grid of I Level plots
UN-ECE ICP Forest
defoliation
types of forest site condition
representativeness assessment
моніторинг лісів
мережа ділянок І рівня
UN-ECE ICP Forest
дефоліація
типи лісорослинних умов
оцінка репрезентативності
url https://forestry-forestmelioration.org.ua/index.php/journal/article/view/212
work_keys_str_mv AT bukshaif datarepresentativityassessmentformonitoringofukrainianforestsatvariouspermanentplotdensities
AT bukshami datarepresentativityassessmentformonitoringofukrainianforestsatvariouspermanentplotdensities
AT pyvovarts datarepresentativityassessmentformonitoringofukrainianforestsatvariouspermanentplotdensities
AT bukshaif ocínkareprezentativnostídanihmonítoringulísívukraínizaríznoíŝílʹnostímerežídílânokspostereženʹ
AT bukshami ocínkareprezentativnostídanihmonítoringulísívukraínizaríznoíŝílʹnostímerežídílânokspostereženʹ
AT pyvovarts ocínkareprezentativnostídanihmonítoringulísívukraínizaríznoíŝílʹnostímerežídílânokspostereženʹ