Мікоризні асоціації сосни: види, їхні характеристики та роль у лісових екосистемах
Introduction Addressing the preservation and adaptation of key tree species to climate change is an urgent task. The ability of trees to survive under extreme conditions largely depends on their adaptability, particularly the development of robust root systems. Mycorrhizal symbiosis is crucial in en...
Gespeichert in:
| Datum: | 2024 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | Ukrainisch |
| Veröffentlicht: |
Ukrainian Research Institute of Forestry and Forest Melioration named after G. M. Vysotsky (URIFFM)
2024
|
| Schlagworte: | |
| Online Zugang: | https://forestry-forestmelioration.org.ua/index.php/journal/article/view/432 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Forestry and Forest Melioration |
Institution
Forestry and Forest Melioration| Zusammenfassung: | Introduction
Addressing the preservation and adaptation of key tree species to climate change is an urgent task. The ability of trees to survive under extreme conditions largely depends on their adaptability, particularly the development of robust root systems. Mycorrhizal symbiosis is crucial in enhancing plant growth, improving nutrient uptake, and protecting against toxic compounds and pathogens. Additionally, mycorrhizal fungi contribute to nutrient cycling and carbon sequestration in the soil, thereby supporting tree productivity, especially in nutrient-poor environments.
Impact of climate change on mycorrhizal fungi. Climate change significantly affects mycorrhizal associations, which are essential for maintaining plant health and ecosystem stability. Rising temperatures, shifts in precipitation patterns, and increased atmospheric CO2 levels pose new challenges for mycorrhizal fungi, influencing their symbiotic relationships with trees. For example, changes in soil moisture and temperature can promote the spread of pathogenic fungi, weakening the protective functions of mycorrhizae.
The role of mycorrhiza in forest ecosystems. Ectomycorrhizae (EM) play a vital role in forest ecosystems, particularly in nutrient-poor soils, by enhancing the uptake of nitrogen, phosphorus, and other essential minerals. This, in turn, improves tree growth and resilience to environmental stressors such as drought and extreme temperatures. Additionally, mycorrhizal fungi help protect trees against pathogens and toxic substances. In Ukraine, research on forest mycobiomes remains limited, primarily focusing on taxonomic descriptions. There is an urgent need for systematic studies to explore the functional roles of mycorrhizal fungi in nutrient cycling and forest stability. Furthermore, understanding the potential of mycorrhizal species for seedling inoculation could enhance reforestation efforts and improve forest resilience in the face of climate change.
Mycorrhizal companions of Scots pine. Pinus species rely on characteristic ectomycorrhizal (EM) associations with various soil fungi. Mycorrhizal networks in the soil and on tree roots enhance nutrient accessibility and create favourable conditions for tree growth and development. Research in Ukraine has demonstrated the positive effects of Suillus luteus and Amanita muscaria mycorrhizae on the survival of pine seedlings, especially after forest fires. Scots pine species depend on specific ectomycorrhizae formed by soil fungi, which enhance nutrient uptake and create favorable growth conditions. Mycorrhized seedlings with Thelephora terrestris, Suillus bovinus, and Scleroderma citrinum showed higher nitrogen assimilation rates and shoot-to-root ratios than non-mycorrhized seedlings but exhibited lower shoot growth rates. The mycelium of S. citrinum retains 32% of the nitrogen supplied to the plants, which resulted in reduced host plant growth rates. Another significant mycorrhizal partner of Scots pine is Imleria badia, which thrives in diverse environments, including areas contaminated with heavy metals. The symbiotic relationship between pines and ectomycorrhizal fungi, particularly species of the Suilloid genus, can support pine adaptation in various habitats.
Mycorrhiza and Disease Resistance in Pine. Mycorrhizal fungi play a vital role in the growth and survival of trees in nutrient-poor soils by protecting them from toxic substances and phytopathogens. By forming a biotrophic association with their host trees, these fungi receive carbohydrates while enhancing the trees’ resistance to environmental stress and pathogenic threats. Mycorrhizal symbiosis improves tree vitality by mitigating the effects of toxic compounds and harmful microorganisms, thereby contributing to overall forest health and stability.
Conclusion
Given the critical role of mycorrhizal fungi in the restoration and conservation of temperate and boreal forests, further research and conservation measures are essential, particularly in the context of climate change. Preserving native and stress-tolerant mycorrhizal fungi strains offers a promising, eco-friendly strategy for enhancing forest ecosystem stability and mitigating the impacts of climate change.
76 Refs. |
|---|