МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2

The purpose of this article is selection and substantiate the construct materials for a mobile battery of thermal energy. To evaluate the impact of chemical corrosion on the structural materials of the tank-battery, and researching the strength of the tank-battery during transportation and determina...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2018
Автори: Demchenko, V.G., Trubachev, A.S., Falko, V.J., Hron, S.S.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Institute of Engineering Thermophysics of NAS of Ukraine 2018
Онлайн доступ:https://ihe.nas.gov.ua/index.php/journal/article/view/301
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Thermophysics and Thermal Power Engineering

Репозитарії

Thermophysics and Thermal Power Engineering
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-301
record_format ojs
institution Thermophysics and Thermal Power Engineering
baseUrl_str
datestamp_date 2018-12-14T18:59:57Z
collection OJS
language Ukrainian
format Article
author Demchenko, V.G.
Trubachev, A.S.
Falko, V.J.
Hron, S.S.
spellingShingle Demchenko, V.G.
Trubachev, A.S.
Falko, V.J.
Hron, S.S.
МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
author_facet Demchenko, V.G.
Trubachev, A.S.
Falko, V.J.
Hron, S.S.
author_sort Demchenko, V.G.
title МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
title_short МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
title_full МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
title_fullStr МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
title_full_unstemmed МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2
title_sort мобільні акумулятори для дискретних систем теплохолодопостачання. частина 2
title_alt MOBILE ACCUMULATORS FOR DISCRETE SYSTEMS HEAT-COLD SUPPLIES. Part 2.
description The purpose of this article is selection and substantiate the construct materials for a mobile battery of thermal energy. To evaluate the impact of chemical corrosion on the structural materials of the tank-battery, and researching the strength of the tank-battery during transportation and determination the feasibility of introducing and effectiveness of investments in environmental measures on the example of the implementation of the discrete heating / cooling systems. A comparison has been made of the technical characteristics chosen for our studies of heat storage material - bischofite and sodium acetate trihydrate, which showed that both substances have certain advantages and limitations in their application. An experiment was carried out to determine the stability of the material for corrosion, after the 10 cycles of heating-cooling, the metal parts that were deposited in the bischofite solution remained virtually unchanged, no corrosion marks were observed. While specimens that were in the melt of sodium triacetate have obvious corrosion marks (except for a stainless steel sample). Particularly noticeable corrosion of samples that were on the verge of air and sodium triacetate. Thus, it has been confirmed that the use of hydrated salt melts requires additional measures to protect against corrosion of metals, and the use of polymer materials is limited by the temperature of their application. Calculations of the strength of the tank-accumulator at static and dynamic loads with the account of transportation are carried out. Taking into account the obtained results of Mises stress, the tensile stresses in the cut and stresses of bolted joints during rolling during transport under conditions of use of steel constructions are higher. In the course of determining the feasibility of implementing the project, it was tested and proposed to supplement the methods of calculating the investment of energy saving measures and projects by a fundamentally new method of strategic rapid analysis "3E". This method allows you to get a graphical representation of the result of the analysis and with a high degree of probability to determine the strategy of financing the implementation projects. The analysis is based on three main criteria, namely: energy, environmental and economic. These weighting criteria consist of a number of values that are necessary to obtain a likely return on the payback of the implementation project. The results of express analysis are clearly represented in the form of the area of permissible values on the triangular diagram, which we are invited to call the "3E triangle" in the initial words of words: Energy, Ecology and Economics. An economic analysis has also been conducted, which showed that the estimated payback period of the project is less than five years, and the volume of annual revenue from the sale of thermal energy and cold is 1470000 UAH. Thus, the project is attractive for investment.
publisher Institute of Engineering Thermophysics of NAS of Ukraine
publishDate 2018
url https://ihe.nas.gov.ua/index.php/journal/article/view/301
work_keys_str_mv AT demchenkovg mobileaccumulatorsfordiscretesystemsheatcoldsuppliespart2
AT trubachevas mobileaccumulatorsfordiscretesystemsheatcoldsuppliespart2
AT falkovj mobileaccumulatorsfordiscretesystemsheatcoldsuppliespart2
AT hronss mobileaccumulatorsfordiscretesystemsheatcoldsuppliespart2
AT demchenkovg mobílʹníakumulâtoridlâdiskretnihsistemteploholodopostačannâčastina2
AT trubachevas mobílʹníakumulâtoridlâdiskretnihsistemteploholodopostačannâčastina2
AT falkovj mobílʹníakumulâtoridlâdiskretnihsistemteploholodopostačannâčastina2
AT hronss mobílʹníakumulâtoridlâdiskretnihsistemteploholodopostačannâčastina2
first_indexed 2025-12-17T13:55:14Z
last_indexed 2025-12-17T13:55:14Z
_version_ 1851763945069608960
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-3012018-12-14T18:59:57Z MOBILE ACCUMULATORS FOR DISCRETE SYSTEMS HEAT-COLD SUPPLIES. Part 2. МОБІЛЬНІ АКУМУЛЯТОРИ ДЛЯ ДИСКРЕТНИХ СИСТЕМ ТЕПЛОХОЛОДОПОСТАЧАННЯ. Частина 2 Demchenko, V.G. Trubachev, A.S. Falko, V.J. Hron, S.S. The purpose of this article is selection and substantiate the construct materials for a mobile battery of thermal energy. To evaluate the impact of chemical corrosion on the structural materials of the tank-battery, and researching the strength of the tank-battery during transportation and determination the feasibility of introducing and effectiveness of investments in environmental measures on the example of the implementation of the discrete heating / cooling systems. A comparison has been made of the technical characteristics chosen for our studies of heat storage material - bischofite and sodium acetate trihydrate, which showed that both substances have certain advantages and limitations in their application. An experiment was carried out to determine the stability of the material for corrosion, after the 10 cycles of heating-cooling, the metal parts that were deposited in the bischofite solution remained virtually unchanged, no corrosion marks were observed. While specimens that were in the melt of sodium triacetate have obvious corrosion marks (except for a stainless steel sample). Particularly noticeable corrosion of samples that were on the verge of air and sodium triacetate. Thus, it has been confirmed that the use of hydrated salt melts requires additional measures to protect against corrosion of metals, and the use of polymer materials is limited by the temperature of their application. Calculations of the strength of the tank-accumulator at static and dynamic loads with the account of transportation are carried out. Taking into account the obtained results of Mises stress, the tensile stresses in the cut and stresses of bolted joints during rolling during transport under conditions of use of steel constructions are higher. In the course of determining the feasibility of implementing the project, it was tested and proposed to supplement the methods of calculating the investment of energy saving measures and projects by a fundamentally new method of strategic rapid analysis "3E". This method allows you to get a graphical representation of the result of the analysis and with a high degree of probability to determine the strategy of financing the implementation projects. The analysis is based on three main criteria, namely: energy, environmental and economic. These weighting criteria consist of a number of values that are necessary to obtain a likely return on the payback of the implementation project. The results of express analysis are clearly represented in the form of the area of permissible values on the triangular diagram, which we are invited to call the "3E triangle" in the initial words of words: Energy, Ecology and Economics. An economic analysis has also been conducted, which showed that the estimated payback period of the project is less than five years, and the volume of annual revenue from the sale of thermal energy and cold is 1470000 UAH. Thus, the project is attractive for investment. В данной статье сделаны выводы о влиянии коррозии на конструкцию бака-аккумулятора, приведены расчёты на прочность, разработана номограмма для определения тепловой аккумулируемой мощности в зависимости от объёма и температуры, проведен экономический анализ проекта выполнена оценка энергетических, экологических и экономических параметров системы и предложен экспресс-метод анализа эффективности проекта. У цій статті зроблені висновки про вплив корозії на конструкцію бака-акумулятора, приведені розрахунки на міцність, розроблена номограма для визначення теплової потужності, що акумулюється, в залежності від об'єму і температури, проведено економічний аналіз проекту, виконана оцінка енергетичних, екологічних і економічних параметрів системи і запропонований експрес-метод аналізу ефективності проекту. Institute of Engineering Thermophysics of NAS of Ukraine 2018-09-07 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/301 10.31472/ihe.3.2018.08 Thermophysics and Thermal Power Engineering; Vol 40 No 3 (2018): Industrial Heat Engineering; 57-69 Теплофизика и Теплоэнергетика; Vol 40 No 3 (2018): Industrial Heat Engineering; 57-69 Теплофізика та Теплоенергетика; Vol 40 No 3 (2018): Industrial Heat Engineering; 57-69 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/301/244 http://creativecommons.org/licenses/by/4.0