ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ
Optimizing the storage methods for excess heat energy and associated technical and technological solutions has a significant impact on the development of LHTES systems. New technologies for storing thermal energy are increasingly an alternative to the classic methods of providing thermal infrastruct...
Saved in:
| Date: | 2019 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
Institute of Engineering Thermophysics of NAS of Ukraine
2019
|
| Online Access: | https://ihe.nas.gov.ua/index.php/journal/article/view/340 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Thermophysics and Thermal Power Engineering |
Institution
Thermophysics and Thermal Power Engineering| id |
oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-340 |
|---|---|
| record_format |
ojs |
| institution |
Thermophysics and Thermal Power Engineering |
| baseUrl_str |
|
| datestamp_date |
2019-06-09T10:03:58Z |
| collection |
OJS |
| language |
Ukrainian |
| format |
Article |
| author |
Demchenko, V.G. Falco, V.Yu |
| spellingShingle |
Demchenko, V.G. Falco, V.Yu ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| author_facet |
Demchenko, V.G. Falco, V.Yu |
| author_sort |
Demchenko, V.G. |
| title |
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| title_short |
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| title_full |
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| title_fullStr |
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| title_full_unstemmed |
ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ |
| title_sort |
експериментальне дослідження термічної стійкості речовин для зберігання теплової енергії |
| title_alt |
EXPERIMENTAL RESEARCH OF THERMAL STABILITY OF SUBSTANCES FOR THERMAL ENERGY STORAGE ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОЙ СТОЙКОСТИ ВЕЩЕСТВ ДЛЯ ХРАНЕНИЯ ТЕПЛОВОЙ ЕНЕРГИИ |
| description |
Optimizing the storage methods for excess heat energy and associated technical and technological solutions has a significant impact on the development of LHTES systems. New technologies for storing thermal energy are increasingly an alternative to the classic methods of providing thermal infrastructure facilities. In this paper we analyze the results of experimental studies of heat-storage materials for their further integration into the Smart Grid heating system of infrastructure objects and use in the M-TES. The conducted literary review showed that the thermophysical parameters of the investigated substances for the conservation of heat from different authors are very different. We conclude that this is due to the quality of the materials being studied and the errors of laboratory measurements. This negatively affects the design of LHTES systems and greatly complicates the calculation and modeling of heat transfer processes. It is especially important to correctly determine the amount of heat that can be obtained during the charging and discharge cycles of TES, as well as the lifetime of the material that accumulates heat. Therefore, the purpose of this work is to identify the appropriate material for energy storage applications between 0 0C and 115 0C and evaluate it, depending on the thermophysical properties and the time of stable operation. Taking into account the economic aspects, only the available technical materials are considered within the framework of this study, since the choice of material is aimed at the use of M-TES in real conditions of operation. Figure 1 summarizes the results of research on heating and cooling cycles of heats of heat storage substances. High thermal power and, hence, high thermal conductivity are important for the storage efficiency of PCM, especially in the process of solidification, because in a heat transfer predominant solid layer that grows continuously. However, both PCMs are not suitable for mobile thermal storage systems in this form. The huge disadvantages are the emergence of different values of the melting point, the high retention time of both candidates, as well as their prices. Therefore, further research should be directed to eliminate these negative effects. Despite the relatively low density of heat storage with aqueous solutions of antifreeze, they are beneficial candidates for waste heat transfer systems within the framework of this study. Addition of NaCl salt practically does not affect the speed of heating and cooling of the coolant. The addition of bischofite worsens the thermophysical properties of water and shows a small density of heat accumulation. It has been experimentally established that after 3 ... 4 cycles of heating and cooling from a solution of technical bischofite, a dark yellow, insoluble precipitate forms, which creates problems during the operation. Significant increase in TES discharge time was obtained when testing ozokerite. All of the above substances have shown a stable state after 30 cycles of heating / cooling and indicate overcooling below the melting point by about 30 °C. Trihydrate sodium acetate shows no stable results. Subsequently, after 20 cycles of heating and cooling, it loses its properties. |
| publisher |
Institute of Engineering Thermophysics of NAS of Ukraine |
| publishDate |
2019 |
| url |
https://ihe.nas.gov.ua/index.php/journal/article/view/340 |
| work_keys_str_mv |
AT demchenkovg experimentalresearchofthermalstabilityofsubstancesforthermalenergystorage AT falcovyu experimentalresearchofthermalstabilityofsubstancesforthermalenergystorage AT demchenkovg éksperimentalʹnoeissledovanietermičeskojstojkostiveŝestvdlâhraneniâteplovojenergii AT falcovyu éksperimentalʹnoeissledovanietermičeskojstojkostiveŝestvdlâhraneniâteplovojenergii AT demchenkovg eksperimentalʹnedoslídžennâtermíčnoístíjkostírečovindlâzberígannâteplovoíenergíí AT falcovyu eksperimentalʹnedoslídžennâtermíčnoístíjkostírečovindlâzberígannâteplovoíenergíí |
| first_indexed |
2025-12-17T13:55:22Z |
| last_indexed |
2025-12-17T13:55:22Z |
| _version_ |
1851763953612357632 |
| spelling |
oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-3402019-06-09T10:03:58Z EXPERIMENTAL RESEARCH OF THERMAL STABILITY OF SUBSTANCES FOR THERMAL ENERGY STORAGE ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОЙ СТОЙКОСТИ ВЕЩЕСТВ ДЛЯ ХРАНЕНИЯ ТЕПЛОВОЙ ЕНЕРГИИ ЕКСПЕРИМЕНТАЛЬНЕ ДОСЛІДЖЕННЯ ТЕРМІЧНОЇ СТІЙКОСТІ РЕЧОВИН ДЛЯ ЗБЕРІГАННЯ ТЕПЛОВОЇ ЕНЕРГІЇ Demchenko, V.G. Falco, V.Yu Optimizing the storage methods for excess heat energy and associated technical and technological solutions has a significant impact on the development of LHTES systems. New technologies for storing thermal energy are increasingly an alternative to the classic methods of providing thermal infrastructure facilities. In this paper we analyze the results of experimental studies of heat-storage materials for their further integration into the Smart Grid heating system of infrastructure objects and use in the M-TES. The conducted literary review showed that the thermophysical parameters of the investigated substances for the conservation of heat from different authors are very different. We conclude that this is due to the quality of the materials being studied and the errors of laboratory measurements. This negatively affects the design of LHTES systems and greatly complicates the calculation and modeling of heat transfer processes. It is especially important to correctly determine the amount of heat that can be obtained during the charging and discharge cycles of TES, as well as the lifetime of the material that accumulates heat. Therefore, the purpose of this work is to identify the appropriate material for energy storage applications between 0 0C and 115 0C and evaluate it, depending on the thermophysical properties and the time of stable operation. Taking into account the economic aspects, only the available technical materials are considered within the framework of this study, since the choice of material is aimed at the use of M-TES in real conditions of operation. Figure 1 summarizes the results of research on heating and cooling cycles of heats of heat storage substances. High thermal power and, hence, high thermal conductivity are important for the storage efficiency of PCM, especially in the process of solidification, because in a heat transfer predominant solid layer that grows continuously. However, both PCMs are not suitable for mobile thermal storage systems in this form. The huge disadvantages are the emergence of different values of the melting point, the high retention time of both candidates, as well as their prices. Therefore, further research should be directed to eliminate these negative effects. Despite the relatively low density of heat storage with aqueous solutions of antifreeze, they are beneficial candidates for waste heat transfer systems within the framework of this study. Addition of NaCl salt practically does not affect the speed of heating and cooling of the coolant. The addition of bischofite worsens the thermophysical properties of water and shows a small density of heat accumulation. It has been experimentally established that after 3 ... 4 cycles of heating and cooling from a solution of technical bischofite, a dark yellow, insoluble precipitate forms, which creates problems during the operation. Significant increase in TES discharge time was obtained when testing ozokerite. All of the above substances have shown a stable state after 30 cycles of heating / cooling and indicate overcooling below the melting point by about 30 °C. Trihydrate sodium acetate shows no stable results. Subsequently, after 20 cycles of heating and cooling, it loses its properties. Основное внимание в этой статье уделено изучению веществ, которые потенциально могут быть использованы для низкотемпературного хранения тепловой энергии в мобильных аккумуляторах. Рассмотрены особенности влияния теплофизических свойств и термической устойчивости различных веществ на теплообмен, срок эксплуатации и время зарядки/разрядки аккумулятора. Проведен анализ особенностей свойств веществ для дальнейшего практического применения. Выводы и рекомендации направлены на освещение разногласий в существующих исследованиях в этой сфере. Основна увага в цій статті приділена вивченню речовин, які потенційно підходять для низькотемпературного зберігання теплової енергії в мобільних акумуляторах. Розглянуті особливості впливу теплофізичних властивостей та термічної стійкості різних речовин на теплообмін, теплопровідність, термін експлуатації та час зарядки/розрядки акумулятора. Проведено аналіз особливостей властивостей речовин для їх подальшого практичного застосування. Висновки та рекомендації спрямовані на освітлення розбіжностей в сучасних дослідженнях в цій сфері. Institute of Engineering Thermophysics of NAS of Ukraine 2019-04-26 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/340 10.31472/ttpe.2.2019.9 Thermophysics and Thermal Power Engineering; Vol 41 No 2 (2019): Thermophysics and Thermal Power Engineering; 64-71 Теплофизика и Теплоэнергетика; Vol 41 No 2 (2019): Thermophysics and Thermal Power Engineering; 64-71 Теплофізика та Теплоенергетика; Vol 41 No 2 (2019): Thermophysics and Thermal Power Engineering; 64-71 2663-7235 10.31472/ttpe.2.2019 uk https://ihe.nas.gov.ua/index.php/journal/article/view/340/282 |