ЕНЕРГОЗБЕРІГАЮЧІ ТЕХНОЛОГІЇ СУШІННЯ ТЕРМОЛАБІЛЬНИХ МАТЕРІАЛІВ

The promising development of convective drying of thermolabile materials is the use of heat pumps. The main advantages of heat pump drying are high energy efficiency, controlled thermal conditions of drying, high quality of the final product, environmental cleanliness of the technological process.Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2019
Hauptverfasser: Sniezhkin, Yu.F., Jian, Xiong, Chalaev, D.M., Ulanov, М.М., Dabizha, N.О.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Institute of Engineering Thermophysics of NAS of Ukraine 2019
Online Zugang:https://ihe.nas.gov.ua/index.php/journal/article/view/358
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Thermophysics and Thermal Power Engineering

Institution

Thermophysics and Thermal Power Engineering
Beschreibung
Zusammenfassung:The promising development of convective drying of thermolabile materials is the use of heat pumps. The main advantages of heat pump drying are high energy efficiency, controlled thermal conditions of drying, high quality of the final product, environmental cleanliness of the technological process.The processes of air treatment in convective heat pumps with different schemes of dehydration of the drying agent are considered in the paper. As determined, the main disadvantage of heat pump drying is the long duration of the process due to the drying temperature limitation not exceeding 50-60 °C, and the dried material is not initially heated above the temperature of the wet thermometer, which is 25-30 °C. The possibility of using infrared radiation in combination with a heat pump was studied to intensify the process of low-temperature convective drying. It is shown that the combination of heat pump and infrared drying processes provides a synergistic effect, which leads to a shorter drying time and reduced energy consumption, as well as to obtain better quality dried products.