АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ

In Ukraine, the safety of modern thermal power plants depends on the reliable operation of the equipment installed on them. Unfortunately, the technical condition of the chimneys is not properly maintained. Of course, the modernization of basic equipment (boilers, switching to another type of fuel)...

Full description

Saved in:
Bibliographic Details
Date:2021
Main Authors: Chyrkova, A.P., Khalatov, A.A., Oliynik, V.S., Shikhabutinova, O.V.
Format: Article
Language:Ukrainian
Published: Institute of Engineering Thermophysics of NAS of Ukraine 2021
Online Access:https://ihe.nas.gov.ua/index.php/journal/article/view/461
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Thermophysics and Thermal Power Engineering

Institution

Thermophysics and Thermal Power Engineering
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-461
record_format ojs
institution Thermophysics and Thermal Power Engineering
baseUrl_str
datestamp_date 2021-12-20T09:25:11Z
collection OJS
language Ukrainian
format Article
author Chyrkova, A.P.
Khalatov, A.A.
Oliynik, V.S.
Shikhabutinova, O.V.
spellingShingle Chyrkova, A.P.
Khalatov, A.A.
Oliynik, V.S.
Shikhabutinova, O.V.
АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
author_facet Chyrkova, A.P.
Khalatov, A.A.
Oliynik, V.S.
Shikhabutinova, O.V.
author_sort Chyrkova, A.P.
title АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
title_short АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
title_full АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
title_fullStr АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
title_full_unstemmed АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ
title_sort аеродинаміка та теплообмін одиночної конічної труби при зовнішньому обтіканні
title_alt AERODYNAMICS AND HEAT EXCHANGE OF SINGLE END TUBE DURING EXTERNAL FLOW
description In Ukraine, the safety of modern thermal power plants depends on the reliable operation of the equipment installed on them. Unfortunately, the technical condition of the chimneys is not properly maintained. Of course, the modernization of basic equipment (boilers, switching to another type of fuel) leads to a decrease in the temperature of the exhaust gases. An important aspect to maintain the condition of the chimneys is to maintain the moisture of the exhaust gases. An important feature of the external flow of chimneys are large Reynolds numbers Re = wd/n, which reach 106 and more. In the thermal calculation only the average heat transfer coefficient on the outer surface of the pipe is usually determined, and the features of aerodynamics and local heat transfer due to the conicity of the pipe are not taken into account. The work is devoted to the study of aerodynamics and heat transfer in the air flow of a single conical chimney. The method of computer modeling with numerical integration of equations of motion and energy was used in the research. At the first stage, the single pipe with the uniform flow profile is considered. Further, the influence of the surrounding infrastructure on the aerodynamics and heat transfer of a single conical tube is studied. The single conical vertical pipe with 40 m height, 1.7 m diameter at the base and 0.85 m in the mouth was used for the calculation. The computer model was calculated in the ANSYS2020-R1 program. The model is developed in a homogeneous area with the air environment. In order to obtain reliable results, the study was conducted to obtain the optimal set of the grid parameters for the heat transfer conditions. The grids with parameters that affect the distance of the first node from the cylinder wall (options a, b, c, d) and the rate of increase in the size of the elements as they move away from the area of interest (Growth rate GR) were studied. The type of the cylindrical pipe with constant diameter of 1.7 m has been chosen to analyze the sensitivity and to check the grid. The turbulence model has been choosen as the following: RNG k-ε model which is common for the tasks of this class, the Enhanced Wall Function, the solution algorithm for the connection of the velocity pressure in stable flows Simplex. It is determined that in case if the distance between the first node from the cylinder wall and the area of interest (Growth rate GR) is more than 8 mm, instability and deviation of the obtained data from the values of the average coefficient of more than 20% appears. As a result of the research, the parameter grid area matching to the “2d” option of table 1 has been selected, i.e.: GR = 1.1, h = 8 mm. In the study of aerodynamics and heat transfer, the conical tube is conventionally divided into 22 sections (with 1 m height each). The case of uniform flow velocity in front of the pipe has been considered. As seen, the maximum value of the heat transfer coefficient is in the Zone(21-22). The research shows that oncoming flow velocity of 25 m/s causes the average value of heat transfer coefficient of the conical pipe 62.5 W/m2K, and 61.1 W/m2K according to the known formula . This indicates a small effect of taper on the average heat transfer of the entire pipe. In the calculations, three types of surrounding areas are considered: A - open coasts of seas, lakes and reservoirs, rural areas, including buildings less than 10 m high; B - urban areas, forests and other areas, evenly covered with obstacles higher than 10 m; C - urban areas with dense buildings with buildings higher than 25 m. Thus, the wind speed profiles for different types of terrain are nonlinear. The wind speed profile in front of the pipe (type of terrain) has a significant effect on the heat transfer coefficient. This confirms the need to take into account the type of terrain and the velocity profile in front of the pipe for local heat transfer.
publisher Institute of Engineering Thermophysics of NAS of Ukraine
publishDate 2021
url https://ihe.nas.gov.ua/index.php/journal/article/view/461
work_keys_str_mv AT chyrkovaap aerodynamicsandheatexchangeofsingleendtubeduringexternalflow
AT khalatovaa aerodynamicsandheatexchangeofsingleendtubeduringexternalflow
AT oliynikvs aerodynamicsandheatexchangeofsingleendtubeduringexternalflow
AT shikhabutinovaov aerodynamicsandheatexchangeofsingleendtubeduringexternalflow
AT chyrkovaap aerodinamíkatateploobmínodinočnoíkoníčnoítrubiprizovníšnʹomuobtíkanní
AT khalatovaa aerodinamíkatateploobmínodinočnoíkoníčnoítrubiprizovníšnʹomuobtíkanní
AT oliynikvs aerodinamíkatateploobmínodinočnoíkoníčnoítrubiprizovníšnʹomuobtíkanní
AT shikhabutinovaov aerodinamíkatateploobmínodinočnoíkoníčnoítrubiprizovníšnʹomuobtíkanní
first_indexed 2025-12-17T13:55:42Z
last_indexed 2025-12-17T13:55:42Z
_version_ 1851763974661472256
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-4612021-12-20T09:25:11Z AERODYNAMICS AND HEAT EXCHANGE OF SINGLE END TUBE DURING EXTERNAL FLOW АЕРОДИНАМІКА ТА ТЕПЛООБМІН ОДИНОЧНОЇ КОНІЧНОЇ ТРУБИ ПРИ ЗОВНІШНЬОМУ ОБТІКАННІ Chyrkova, A.P. Khalatov, A.A. Oliynik, V.S. Shikhabutinova, O.V. In Ukraine, the safety of modern thermal power plants depends on the reliable operation of the equipment installed on them. Unfortunately, the technical condition of the chimneys is not properly maintained. Of course, the modernization of basic equipment (boilers, switching to another type of fuel) leads to a decrease in the temperature of the exhaust gases. An important aspect to maintain the condition of the chimneys is to maintain the moisture of the exhaust gases. An important feature of the external flow of chimneys are large Reynolds numbers Re = wd/n, which reach 106 and more. In the thermal calculation only the average heat transfer coefficient on the outer surface of the pipe is usually determined, and the features of aerodynamics and local heat transfer due to the conicity of the pipe are not taken into account. The work is devoted to the study of aerodynamics and heat transfer in the air flow of a single conical chimney. The method of computer modeling with numerical integration of equations of motion and energy was used in the research. At the first stage, the single pipe with the uniform flow profile is considered. Further, the influence of the surrounding infrastructure on the aerodynamics and heat transfer of a single conical tube is studied. The single conical vertical pipe with 40 m height, 1.7 m diameter at the base and 0.85 m in the mouth was used for the calculation. The computer model was calculated in the ANSYS2020-R1 program. The model is developed in a homogeneous area with the air environment. In order to obtain reliable results, the study was conducted to obtain the optimal set of the grid parameters for the heat transfer conditions. The grids with parameters that affect the distance of the first node from the cylinder wall (options a, b, c, d) and the rate of increase in the size of the elements as they move away from the area of interest (Growth rate GR) were studied. The type of the cylindrical pipe with constant diameter of 1.7 m has been chosen to analyze the sensitivity and to check the grid. The turbulence model has been choosen as the following: RNG k-ε model which is common for the tasks of this class, the Enhanced Wall Function, the solution algorithm for the connection of the velocity pressure in stable flows Simplex. It is determined that in case if the distance between the first node from the cylinder wall and the area of interest (Growth rate GR) is more than 8 mm, instability and deviation of the obtained data from the values of the average coefficient of more than 20% appears. As a result of the research, the parameter grid area matching to the “2d” option of table 1 has been selected, i.e.: GR = 1.1, h = 8 mm. In the study of aerodynamics and heat transfer, the conical tube is conventionally divided into 22 sections (with 1 m height each). The case of uniform flow velocity in front of the pipe has been considered. As seen, the maximum value of the heat transfer coefficient is in the Zone(21-22). The research shows that oncoming flow velocity of 25 m/s causes the average value of heat transfer coefficient of the conical pipe 62.5 W/m2K, and 61.1 W/m2K according to the known formula . This indicates a small effect of taper on the average heat transfer of the entire pipe. In the calculations, three types of surrounding areas are considered: A - open coasts of seas, lakes and reservoirs, rural areas, including buildings less than 10 m high; B - urban areas, forests and other areas, evenly covered with obstacles higher than 10 m; C - urban areas with dense buildings with buildings higher than 25 m. Thus, the wind speed profiles for different types of terrain are nonlinear. The wind speed profile in front of the pipe (type of terrain) has a significant effect on the heat transfer coefficient. This confirms the need to take into account the type of terrain and the velocity profile in front of the pipe for local heat transfer. Розглянуті особливості зовнішньої аеродинаміки та теплообміну одиночної верти­кальної конічної труби, встановленої на земній поверх­ні. Дослідження виконано методом комп’ютер­ного моде­лю­вання, 3D модель труби реалізовано в середовищі ANSYS 2020-R1, при моделю­ванні використана RNG k-ε модель турбулентності. При рівномір­но­му профілі набігаю­чого повітряного потоку в кормовій частині труби виявлено періодична зміна статичного тиску і тепловіддачі по висоті труби. Розглянуто вплив інфраструктури навко­лиш­нього простору на зовнішню аеродинаміку і теплообмін одиночній конічної димової труби Institute of Engineering Thermophysics of NAS of Ukraine 2021-12-20 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/461 10.31472/ttpe.4.2021.3 Thermophysics and Thermal Power Engineering; Vol 43 No 4 (2021): Thermophysics and Thermal Power Engineering; 25-33 Теплофизика и Теплоэнергетика; Vol 43 No 4 (2021): Thermophysics and Thermal Power Engineering; 25-33 Теплофізика та Теплоенергетика; Vol 43 No 4 (2021): Thermophysics and Thermal Power Engineering; 25-33 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/461/390 https://creativecommons.org/licenses/by/4.0