ДИНАМІКА РОЗВИТКУ УДАРНОЇ ХВИЛІ В ГАЗІ ВАН ДЕР ВААЛЬСА

The difficulty of studying flow passing through the supersonic threshold and the braking of supersonic flows is associated with the formation of shock waves of different shapes and structures. It cause breakdown of gas state parameters. A shock wave is a strong nonlinear disturbance that travels at...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Avramenko, A.A., Dmitrenko, N.P., Kondrateva, O.O., Protsenko, L.M.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Institute of Engineering Thermophysics of NAS of Ukraine 2023
Онлайн доступ:https://ihe.nas.gov.ua/index.php/journal/article/view/542
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Thermophysics and Thermal Power Engineering

Репозитарії

Thermophysics and Thermal Power Engineering
Опис
Резюме:The difficulty of studying flow passing through the supersonic threshold and the braking of supersonic flows is associated with the formation of shock waves of different shapes and structures. It cause breakdown of gas state parameters. A shock wave is a strong nonlinear disturbance that travels at supersonic speeds. Under this type of disturbance, the main physical characteristics of the flow (temperature, density, pressure) are breaking, passing through pressure jump. In this paper changing of the Van der Waals gas flow parameters are analytically considered where stream passes through the normal pressure jump. Namely, the influence of the degree of compression of real gases and Van der Waals constants on the shock adiabatic are investigated. The modified Rankine-Hugoniot conditions are used for the analytical study of changing the parameters of the Van der Waals gas flow. An increase in the parameter B of the van der Waals model contributes to the shift of the shock adiabatic towards smaller values. Analysis of the effect of parameter A of the van der Waals model on the behavior of the shock adiabatic showed a slowing down of pressure growth in the shock wave. Limit values of parameter Acr, above which the proposed calculation method becomes unusable, have been determined. It is shown that the limiting value of the parameter Acr is affected by the parameter B. An increase in the parameter B contributes to the expansion of the range of values of the parameter Acr. It is range, in which the proposed model, adequately describes the physics of the process. The obtained analytical solutions also make it possible to estimate the influence of parameters A and B on the flow rate. Increasing parameter A, as well as parameter B, leads to a slight increase in the speed jump.