УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ

  Analytical methods for calculating the performance of the turbine are operational as long as the “layered” character of the steam flow is preserved in the flow part. However, as shown by experimental studies, the character of the flow changes significantly in low-flow rate modes....

Full description

Saved in:
Bibliographic Details
Date:2024
Main Authors: Shubenko, O. L, Goloschapov, V. M., Kotulska, O. V., Paramonova, T. M.
Format: Article
Language:Ukrainian
Published: Institute of Engineering Thermophysics of NAS of Ukraine 2024
Online Access:https://ihe.nas.gov.ua/index.php/journal/article/view/573
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Thermophysics and Thermal Power Engineering

Institution

Thermophysics and Thermal Power Engineering
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-573
record_format ojs
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-5732025-02-22T17:48:16Z REFINED PHYSICAL MODEL OF STEAM FLOW IN THE LOW-PRESSURE PART OF A HIGH-POWER TURBINE IN LOW-FLOW RATE MODES УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ Shubenko, O. L Goloschapov, V. M. Kotulska, O. V. Paramonova, T. M.   Analytical methods for calculating the performance of the turbine are operational as long as the “layered” character of the steam flow is preserved in the flow part. However, as shown by experimental studies, the character of the flow changes significantly in low-flow rate modes. In these cases, existing methods of three-dimensional calculations require reliable formation of boundary conditions. The purpose of this study is to analyze the characteristics of low-pressure cylinder (LPC) stages operating in high-power stationary steam turbines, and to form physical models of the flow of the working medium (steam) in such stages at low-flow rate modes, taking into account their location in the flow part. It is advisable to imagine the physical model of the movement of steam in the turbine, starting from the last stage of the LPC and the outlet nozzle, in which separation of flow from the hub the develops. Its formation occurs when the relative volumetric flow rate decreases, starting with = 0.8, depending on the angle b2к at the root of the working blades. A decrease in the operating mode of the LPC turbine stages is also accompanied by a decrease the flow speed in the peripheral zone and a negative angle of attack at the flow entry into the channels of the impeller. On the concave surface of the profile part of the blade, a separation area is formed, which rotates in the rim clearance in the circumferential direction. Reverse flow from the inlet part of the channels of the impeller into the rim clearance occur when the static pressure in it exceeds the full pressure of the flow coming out of the channels of the guide apparatus. Turbulization of the flow of the rotating vortex leads to large irreversible losses of the mechanical energy of the moving flow, which are converted into heat, heating the mass of the working medium of the vortex and the main flow averaged through the channels of the working blade. Thus, the analysis of the gas-dynamic structure of the flow and its thermal state made it possible to clarify the physical model of the steam flow in the LPC at low-flow rate modes. Наведено фізичну модель вихрової структури потоку у проточній частини ЦНТ та умови, що на неї впливають при маловитратних режимах роботи ступенів великої віяловості. Виявлено умови виникнення і розвитку привтулкового відриву та обертового вихору у міжвінцевому зазорі при зниженні відносній об’ємній витраті пари у ступені. Проаналізовано зв'язок температурного стану ступеня зі структурою потоку в ньому. Institute of Engineering Thermophysics of NAS of Ukraine 2024-02-15 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/573 10.31472/ttpe.1.2024.11 Thermophysics and Thermal Power Engineering; Vol 46 No 1 (2024): Thermophysics and Thermal Power Engineering; 84-92 Теплофизика и Теплоэнергетика; Vol 46 No 1 (2024): Thermophysics and Thermal Power Engineering; 84-92 Теплофізика та Теплоенергетика; Vol 46 No 1 (2024): Thermophysics and Thermal Power Engineering; 84-92 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/573/496 https://creativecommons.org/licenses/by/4.0/deed.ru
institution Thermophysics and Thermal Power Engineering
baseUrl_str
datestamp_date 2025-02-22T17:48:16Z
collection OJS
language Ukrainian
format Article
author Shubenko, O. L
Goloschapov, V. M.
Kotulska, O. V.
Paramonova, T. M.
spellingShingle Shubenko, O. L
Goloschapov, V. M.
Kotulska, O. V.
Paramonova, T. M.
УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
author_facet Shubenko, O. L
Goloschapov, V. M.
Kotulska, O. V.
Paramonova, T. M.
author_sort Shubenko, O. L
title УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
title_short УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
title_full УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
title_fullStr УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
title_full_unstemmed УТОЧНЕНА ФІЗИЧНА МОДЕЛЬ ТЕЧІЇ ПАРИ В ЧАСТИНІ НИЗЬКОГО ТИСКУ ТУРБІН ВЕЛИКОЇ ПОТУЖНОСТІ НА МАЛОВИТРАТНИХ РЕЖИМАХ
title_sort уточнена фізична модель течії пари в частині низького тиску турбін великої потужності на маловитратних режимах
title_alt REFINED PHYSICAL MODEL OF STEAM FLOW IN THE LOW-PRESSURE PART OF A HIGH-POWER TURBINE IN LOW-FLOW RATE MODES
description   Analytical methods for calculating the performance of the turbine are operational as long as the “layered” character of the steam flow is preserved in the flow part. However, as shown by experimental studies, the character of the flow changes significantly in low-flow rate modes. In these cases, existing methods of three-dimensional calculations require reliable formation of boundary conditions. The purpose of this study is to analyze the characteristics of low-pressure cylinder (LPC) stages operating in high-power stationary steam turbines, and to form physical models of the flow of the working medium (steam) in such stages at low-flow rate modes, taking into account their location in the flow part. It is advisable to imagine the physical model of the movement of steam in the turbine, starting from the last stage of the LPC and the outlet nozzle, in which separation of flow from the hub the develops. Its formation occurs when the relative volumetric flow rate decreases, starting with = 0.8, depending on the angle b2к at the root of the working blades. A decrease in the operating mode of the LPC turbine stages is also accompanied by a decrease the flow speed in the peripheral zone and a negative angle of attack at the flow entry into the channels of the impeller. On the concave surface of the profile part of the blade, a separation area is formed, which rotates in the rim clearance in the circumferential direction. Reverse flow from the inlet part of the channels of the impeller into the rim clearance occur when the static pressure in it exceeds the full pressure of the flow coming out of the channels of the guide apparatus. Turbulization of the flow of the rotating vortex leads to large irreversible losses of the mechanical energy of the moving flow, which are converted into heat, heating the mass of the working medium of the vortex and the main flow averaged through the channels of the working blade. Thus, the analysis of the gas-dynamic structure of the flow and its thermal state made it possible to clarify the physical model of the steam flow in the LPC at low-flow rate modes.
publisher Institute of Engineering Thermophysics of NAS of Ukraine
publishDate 2024
url https://ihe.nas.gov.ua/index.php/journal/article/view/573
work_keys_str_mv AT shubenkool refinedphysicalmodelofsteamflowinthelowpressurepartofahighpowerturbineinlowflowratemodes
AT goloschapovvm refinedphysicalmodelofsteamflowinthelowpressurepartofahighpowerturbineinlowflowratemodes
AT kotulskaov refinedphysicalmodelofsteamflowinthelowpressurepartofahighpowerturbineinlowflowratemodes
AT paramonovatm refinedphysicalmodelofsteamflowinthelowpressurepartofahighpowerturbineinlowflowratemodes
AT shubenkool utočnenafízičnamodelʹtečííparivčastinínizʹkogotiskuturbínvelikoípotužnostínamalovitratnihrežimah
AT goloschapovvm utočnenafízičnamodelʹtečííparivčastinínizʹkogotiskuturbínvelikoípotužnostínamalovitratnihrežimah
AT kotulskaov utočnenafízičnamodelʹtečííparivčastinínizʹkogotiskuturbínvelikoípotužnostínamalovitratnihrežimah
AT paramonovatm utočnenafízičnamodelʹtečííparivčastinínizʹkogotiskuturbínvelikoípotužnostínamalovitratnihrežimah
first_indexed 2025-12-17T13:56:04Z
last_indexed 2025-12-17T13:56:04Z
_version_ 1851763997643112448