МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ
The model under consideration addresses the transfer of heat and mass (air) through thin walls, described as partially permeable, which are composed of numerous impermeable metal sheets joined together by seams that are not entirely airtight and are permeable to mass. Such walls are found in large i...
Збережено в:
| Дата: | 2024 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Institute of Engineering Thermophysics of NAS of Ukraine
2024
|
| Онлайн доступ: | https://ihe.nas.gov.ua/index.php/journal/article/view/593 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Thermophysics and Thermal Power Engineering |
Репозитарії
Thermophysics and Thermal Power Engineering| id |
oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-593 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-5932025-02-22T18:04:21Z MODEL OF HEAT AND MASS TRANSFER THROUGH THIN PARTIALLY PERMEABLE WALLS МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ Krukovsky, P. Diadiushko, Ye. The model under consideration addresses the transfer of heat and mass (air) through thin walls, described as partially permeable, which are composed of numerous impermeable metal sheets joined together by seams that are not entirely airtight and are permeable to mass. Such walls are found in large industrial facilities in the form of roofs and shells, covering areas of tens of thousands of square meters with metal sheets and tens of kilometers of seams between them. Therefore, modeling the transfer of heat and mass through these thin walls, which are subject to pressure differentials, poses a significant challenge not fully addressed by current CFD models. While modeling the part of heat transfer across the general surface area of thin walls is relatively straightforward, accurately modeling the transfer of mass and heat fraction through the numerous seams between sheets is problematic with CFD technology. This work proposes a method for calculating mass flowrates and the heat fraction through the seams between sheets, distributing it across the entire surface area of the wall according to the signs and values of local pressure differentials between the calculation cells on both sides of the wall. It is noted that while a porous wall model could be used for such purposes, it does not account for the conjugate and radiative heat exchanges between both surfaces of such a wall with airflows and other walls. Unlike this approach, the proposed model incorporates conjugate and radiative heat exchanges and can also accommodate a wall of zero thickness, significantly reducing the number of cells in the main model required for CFD simulation. This submodel has been verified on number of simplified cases and currently applied to simulate air and moisture exchange through the inner and outer shells of the New Safe Confinement of the Chernobyl Nuclear Power Plant. Розглядається модель переносу теплоти і маси (повітря) через тонкі стінки (в роботі названі частково проникними), що складаються з певної кількості металевих листів, через площу яких переноситься тільки теплота, а маса тільки через не достатньо герметичні шви в місцях з’єднання листів. Такі стінки застосовуються як огороджувальні конструкції різноманітних промислових об’єктів, зокрема металевих оболонок Нового Безпечного Конфайнмента ЧАЕС, для яких чисельне моделювання переносу повітря саме через шви між листами викликає значні труднощі внаслідок їх великої протяжності і невизначеності площ протічок. В роботі пропонується модель, за якою теплота і маса переноситься рівномірно через всю поверхню стінки і розрахунок витрат маси і теплоти виконується відповідно до знаків і значень локальних перепадів тиску між розрахунковими комірками з обох сторін стінки. Модель працює аналогічно моделі пористої стінки, але на відміну від неї враховує спряжений і радіаційний теплообмін при застосуванні CFD-моделювання. Institute of Engineering Thermophysics of NAS of Ukraine 2024-09-27 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/593 10.31472/ttpe.3.2024.5 Thermophysics and Thermal Power Engineering; Vol 46 No 3 (2024): Thermophysics and Thermal Power Engineering; 44-51 Теплофизика и Теплоэнергетика; Vol 46 No 3 (2024): Thermophysics and Thermal Power Engineering; 44-51 Теплофізика та Теплоенергетика; Vol 46 No 3 (2024): Thermophysics and Thermal Power Engineering; 44-51 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/593/515 https://creativecommons.org/licenses/by/4.0/deed.ru |
| institution |
Thermophysics and Thermal Power Engineering |
| baseUrl_str |
|
| datestamp_date |
2025-02-22T18:04:21Z |
| collection |
OJS |
| language |
Ukrainian |
| format |
Article |
| author |
Krukovsky, P. Diadiushko, Ye. |
| spellingShingle |
Krukovsky, P. Diadiushko, Ye. МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| author_facet |
Krukovsky, P. Diadiushko, Ye. |
| author_sort |
Krukovsky, P. |
| title |
МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| title_short |
МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| title_full |
МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| title_fullStr |
МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| title_full_unstemmed |
МОДЕЛЬ ТЕПЛОМАСОПЕРЕНОСУ КРІЗЬ ТОНКІ ЧАСТКОВО ПРОНИКНІ СТІНКИ |
| title_sort |
модель тепломасопереносу крізь тонкі частково проникні стінки |
| title_alt |
MODEL OF HEAT AND MASS TRANSFER THROUGH THIN PARTIALLY PERMEABLE WALLS |
| description |
The model under consideration addresses the transfer of heat and mass (air) through thin walls, described as partially permeable, which are composed of numerous impermeable metal sheets joined together by seams that are not entirely airtight and are permeable to mass. Such walls are found in large industrial facilities in the form of roofs and shells, covering areas of tens of thousands of square meters with metal sheets and tens of kilometers of seams between them. Therefore, modeling the transfer of heat and mass through these thin walls, which are subject to pressure differentials, poses a significant challenge not fully addressed by current CFD models. While modeling the part of heat transfer across the general surface area of thin walls is relatively straightforward, accurately modeling the transfer of mass and heat fraction through the numerous seams between sheets is problematic with CFD technology.
This work proposes a method for calculating mass flowrates and the heat fraction through the seams between sheets, distributing it across the entire surface area of the wall according to the signs and values of local pressure differentials between the calculation cells on both sides of the wall. It is noted that while a porous wall model could be used for such purposes, it does not account for the conjugate and radiative heat exchanges between both surfaces of such a wall with airflows and other walls. Unlike this approach, the proposed model incorporates conjugate and radiative heat exchanges and can also accommodate a wall of zero thickness, significantly reducing the number of cells in the main model required for CFD simulation. This submodel has been verified on number of simplified cases and currently applied to simulate air and moisture exchange through the inner and outer shells of the New Safe Confinement of the Chernobyl Nuclear Power Plant. |
| publisher |
Institute of Engineering Thermophysics of NAS of Ukraine |
| publishDate |
2024 |
| url |
https://ihe.nas.gov.ua/index.php/journal/article/view/593 |
| work_keys_str_mv |
AT krukovskyp modelofheatandmasstransferthroughthinpartiallypermeablewalls AT diadiushkoye modelofheatandmasstransferthroughthinpartiallypermeablewalls AT krukovskyp modelʹteplomasoperenosukrízʹtonkíčastkovoproniknístínki AT diadiushkoye modelʹteplomasoperenosukrízʹtonkíčastkovoproniknístínki |
| first_indexed |
2025-12-17T13:56:08Z |
| last_indexed |
2025-12-17T13:56:08Z |
| _version_ |
1851764002024062976 |