ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ

            This work is dedicated to studying natural convection in a flat porous microchannel with asymmetric heating. Analytical solutions for velocity and temperature profiles have been obtained ba...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Avramenko, A.A., Kovetskaya, M.M., Kobzar, A.S., Arkhypov, O.P.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Institute of Engineering Thermophysics of NAS of Ukraine 2025
Онлайн доступ:https://ihe.nas.gov.ua/index.php/journal/article/view/615
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Thermophysics and Thermal Power Engineering

Репозитарії

Thermophysics and Thermal Power Engineering
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-615
record_format ojs
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-6152025-04-22T05:59:16Z HEAT TRANSFER AT NATURAL CONVECTION IN A FLAT POROUS MICRO-CHANNEL WITH UNSYMMETRICAL HEATING ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ Avramenko, A.A. Kovetskaya, M.M. Kobzar, A.S. Arkhypov, O.P.             This work is dedicated to studying natural convection in a flat porous microchannel with asymmetric heating. Analytical solutions for velocity and temperature profiles have been obtained based on symmetry analysis, considering boundary conditions such as slip and temperature jump at the channel walls. The study demonstrates the effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and on the heat transfer coefficients. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall are formed. With an increase in Gr number, the heat transfer coefficient near the hot wall increases, while it decreases near the cold wall. This is attributed to the asymmetry in the change of velocity profiles of ascending and descending flows. The study also shows the effect of the Knudsen number on flow parameters. As Kn number increases the thermal interaction of the heat carrier with the walls decreases, the temperature jumps at the walls increase, and the heat transfer coefficients decrease. With an increase in the Darcy number velocities increase, and velocity jumps at the walls rise due to decreased hydraulic resistance. The heat transfer coefficient near the hot wall increases with Da, while the opposite trend is observed at the cold wall – the heat transfer coefficient decreases with increasing Da number. This is linked to the decrease in temperature gradient near the cold wall due to the increase in the nonlinearity of the temperature profile. As the Pr number increases the temperature jump at the walls decreases, and the temperature profile becomes close to linear. The thermal interaction of the heat carrier with the walls increases, and the heat transfer coefficient also increases. At higher Pr values (Pr = 100)  the heat transfer coefficient near the hot wall sharply increases, while near the cold wall it decreases. This is linked to the decrease in temperature gradient near the cold wall. Such deformation of the temperature profile is caused by the growth of hydraulic resistance due to the increase in the medium's viscosity. Робота присвячена вивченню природної конвекції у плоскому пористому мікроканалі з несиметричним обігрівом. На підставі аналізу симетрії отримано аналітичні рішення для профілів швидкості та температури з урахуванням граничних умов прослизання та стрибка температури на стінках каналу. Показано вплив чисел Грасгофа, Кнудсена, Дарсі та Прандтля на характеристики течії в мікроканалі та коефіцієнти тепловіддачі. Institute of Engineering Thermophysics of NAS of Ukraine 2025-03-31 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/615 Thermophysics and Thermal Power Engineering; Vol 47 No 1 (2025): Thermophysics and Thermal Power Engineering; 49-56 Теплофизика и Теплоэнергетика; Vol 47 No 1 (2025): Thermophysics and Thermal Power Engineering; 49-56 Теплофізика та Теплоенергетика; Vol 47 No 1 (2025): Thermophysics and Thermal Power Engineering; 49-56 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/615/536 https://creativecommons.org/licenses/by/4.0/deed.ru
institution Thermophysics and Thermal Power Engineering
baseUrl_str
datestamp_date 2025-04-22T05:59:16Z
collection OJS
language Ukrainian
format Article
author Avramenko, A.A.
Kovetskaya, M.M.
Kobzar, A.S.
Arkhypov, O.P.
spellingShingle Avramenko, A.A.
Kovetskaya, M.M.
Kobzar, A.S.
Arkhypov, O.P.
ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
author_facet Avramenko, A.A.
Kovetskaya, M.M.
Kobzar, A.S.
Arkhypov, O.P.
author_sort Avramenko, A.A.
title ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
title_short ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
title_full ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
title_fullStr ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
title_full_unstemmed ТЕПЛООБМІН ПРИ ПРИРОДНІЙ КОНВЕКЦІЇ В ПОРИСТОМУ МІКРОКАНАЛІ З НЕСИМЕТРИЧНИМ ОБІГРІВОМ
title_sort теплообмін при природній конвекції в пористому мікроканалі з несиметричним обігрівом
title_alt HEAT TRANSFER AT NATURAL CONVECTION IN A FLAT POROUS MICRO-CHANNEL WITH UNSYMMETRICAL HEATING
description             This work is dedicated to studying natural convection in a flat porous microchannel with asymmetric heating. Analytical solutions for velocity and temperature profiles have been obtained based on symmetry analysis, considering boundary conditions such as slip and temperature jump at the channel walls. The study demonstrates the effect of Grashof, Knudsen, Darcy, and Prandtl numbers on the flow characteristics in the microchannel and on the heat transfer coefficients. At high Grashof numbers, an ascending flow near the hot wall and a descending flow near the cold wall are formed. With an increase in Gr number, the heat transfer coefficient near the hot wall increases, while it decreases near the cold wall. This is attributed to the asymmetry in the change of velocity profiles of ascending and descending flows. The study also shows the effect of the Knudsen number on flow parameters. As Kn number increases the thermal interaction of the heat carrier with the walls decreases, the temperature jumps at the walls increase, and the heat transfer coefficients decrease. With an increase in the Darcy number velocities increase, and velocity jumps at the walls rise due to decreased hydraulic resistance. The heat transfer coefficient near the hot wall increases with Da, while the opposite trend is observed at the cold wall – the heat transfer coefficient decreases with increasing Da number. This is linked to the decrease in temperature gradient near the cold wall due to the increase in the nonlinearity of the temperature profile. As the Pr number increases the temperature jump at the walls decreases, and the temperature profile becomes close to linear. The thermal interaction of the heat carrier with the walls increases, and the heat transfer coefficient also increases. At higher Pr values (Pr = 100)  the heat transfer coefficient near the hot wall sharply increases, while near the cold wall it decreases. This is linked to the decrease in temperature gradient near the cold wall. Such deformation of the temperature profile is caused by the growth of hydraulic resistance due to the increase in the medium's viscosity.
publisher Institute of Engineering Thermophysics of NAS of Ukraine
publishDate 2025
url https://ihe.nas.gov.ua/index.php/journal/article/view/615
work_keys_str_mv AT avramenkoaa heattransferatnaturalconvectioninaflatporousmicrochannelwithunsymmetricalheating
AT kovetskayamm heattransferatnaturalconvectioninaflatporousmicrochannelwithunsymmetricalheating
AT kobzaras heattransferatnaturalconvectioninaflatporousmicrochannelwithunsymmetricalheating
AT arkhypovop heattransferatnaturalconvectioninaflatporousmicrochannelwithunsymmetricalheating
AT avramenkoaa teploobmínpriprirodníjkonvekcíívporistomumíkrokanalíznesimetričnimobígrívom
AT kovetskayamm teploobmínpriprirodníjkonvekcíívporistomumíkrokanalíznesimetričnimobígrívom
AT kobzaras teploobmínpriprirodníjkonvekcíívporistomumíkrokanalíznesimetričnimobígrívom
AT arkhypovop teploobmínpriprirodníjkonvekcíívporistomumíkrokanalíznesimetričnimobígrívom
first_indexed 2025-12-17T13:56:12Z
last_indexed 2025-12-17T13:56:12Z
_version_ 1851764006137626624