ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ

In recent years, Ukraine has actively modernized gas boiler equipment, particularly within programs aimed at increasing energy efficiency and reducing harmful emissions. Traditional boilers with an efficiency of up to 85 % are being replacing with modern condensing boilers with efficiencies of 95–98...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Tselen, B. Ya., Radchenko, N.L., Ivanytskyi, G.K., Nedbailo, A.E., Shchepkin, V.I.
Format: Article
Language:Ukrainian
Published: Institute of Engineering Thermophysics of NAS of Ukraine 2025
Online Access:https://ihe.nas.gov.ua/index.php/journal/article/view/654
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Thermophysics and Thermal Power Engineering

Institution

Thermophysics and Thermal Power Engineering
_version_ 1856543882085400576
author Tselen, B. Ya.
Radchenko, N.L.
Ivanytskyi, G.K.
Nedbailo, A.E.
Shchepkin, V.I.
author_facet Tselen, B. Ya.
Radchenko, N.L.
Ivanytskyi, G.K.
Nedbailo, A.E.
Shchepkin, V.I.
author_sort Tselen, B. Ya.
baseUrl_str
collection OJS
datestamp_date 2026-01-01T09:32:50Z
description In recent years, Ukraine has actively modernized gas boiler equipment, particularly within programs aimed at increasing energy efficiency and reducing harmful emissions. Traditional boilers with an efficiency of up to 85 % are being replacing with modern condensing boilers with efficiencies of 95–98 %, along with advanced burners, automation, and safety systems. The acidic condensate of flue gases produced in modernized boilers is a relatively clean liquid, comparable in quality to distilled water but with a high content of carbon dioxide. However, many central and regional boiler houses, especially in smaller Ukrainian cities, still operate using outdated equipment due to limited investment and wartime destruction. For example, boiler systems in Mykolaiv, Kyiv, and Zhytomyr have been severely damaged by shelling, complicating their restoration and modernization.According to the Ministry of Energy, as of autumn 2023, Ukraine required around 370 modular boiler houses to restore heating services, highlighting the importance of replacing outdated systems. Although natural gas is consider a relatively clean fuel, the condensate resulting from its combustion using outdated equipment may still contain pollutants, including carbon dioxide (CO₂), nitrogen oxides (NOx), and iron oxides. CO₂ forms weak carbonic acid (H₂CO₃) in aqueous environments, lowering the condensate's pH to about 4. Nitrogen oxides form at combustion temperatures above 1200–1300 °C, primarily as nitric oxide (NO) and nitrogen dioxide (NO₂), while iron oxides appear due to corrosion of steel components in the equipment.Modern systems reduce or eliminate these pollutants, but many heat and power facilities still need modernization. Therefore, the development of technology and equipment for condensate purification is essential. This study focuses on creating a comprehensive purification system to remove three main contaminants – carbon dioxide, nitrogen oxides, and iron-containing. This allows the water quality to approach that of distilled water, making it suitable for using as feedwater for boilers or in electrolysers.The analyses shows that purified condensate can reused in boiler systems, for equipment rinsing, humidification, solution preparation, fire safety systems, and as a water source for hydrogen production through electrolysis. Efficient reuse of condensate increases overall energy efficiency and reduces environmental impact.The study proposes a multi-stage treatment process: removal of iron oxides using an electromagnetic filter; decarbonization using a non-reagent neutralizer; and NOx removal through ammonium nitrate formation followed by membrane separation. Experimental research on a lab-scale model confirmed the effectiveness of the proposed system. Statistical analysis and standard testing methods been applied to validate results which confirming that the treated condensate meets quality standards for reuse in electrolysis and boiler applications.
first_indexed 2026-02-08T08:10:17Z
format Article
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-654
institution Thermophysics and Thermal Power Engineering
language Ukrainian
last_indexed 2026-02-08T08:10:17Z
publishDate 2025
publisher Institute of Engineering Thermophysics of NAS of Ukraine
record_format ojs
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-6542026-01-01T09:32:50Z TECHNOLOGIES FOR UTILIZATION OF ACIDIC CONDENSATE FROM FLUE GASES. PRE-TREATMENT, DECARBONIZATION AND SUBSEQUENT USE ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ Tselen, B. Ya. Radchenko, N.L. Ivanytskyi, G.K. Nedbailo, A.E. Shchepkin, V.I. In recent years, Ukraine has actively modernized gas boiler equipment, particularly within programs aimed at increasing energy efficiency and reducing harmful emissions. Traditional boilers with an efficiency of up to 85 % are being replacing with modern condensing boilers with efficiencies of 95–98 %, along with advanced burners, automation, and safety systems. The acidic condensate of flue gases produced in modernized boilers is a relatively clean liquid, comparable in quality to distilled water but with a high content of carbon dioxide. However, many central and regional boiler houses, especially in smaller Ukrainian cities, still operate using outdated equipment due to limited investment and wartime destruction. For example, boiler systems in Mykolaiv, Kyiv, and Zhytomyr have been severely damaged by shelling, complicating their restoration and modernization.According to the Ministry of Energy, as of autumn 2023, Ukraine required around 370 modular boiler houses to restore heating services, highlighting the importance of replacing outdated systems. Although natural gas is consider a relatively clean fuel, the condensate resulting from its combustion using outdated equipment may still contain pollutants, including carbon dioxide (CO₂), nitrogen oxides (NOx), and iron oxides. CO₂ forms weak carbonic acid (H₂CO₃) in aqueous environments, lowering the condensate's pH to about 4. Nitrogen oxides form at combustion temperatures above 1200–1300 °C, primarily as nitric oxide (NO) and nitrogen dioxide (NO₂), while iron oxides appear due to corrosion of steel components in the equipment.Modern systems reduce or eliminate these pollutants, but many heat and power facilities still need modernization. Therefore, the development of technology and equipment for condensate purification is essential. This study focuses on creating a comprehensive purification system to remove three main contaminants – carbon dioxide, nitrogen oxides, and iron-containing. This allows the water quality to approach that of distilled water, making it suitable for using as feedwater for boilers or in electrolysers.The analyses shows that purified condensate can reused in boiler systems, for equipment rinsing, humidification, solution preparation, fire safety systems, and as a water source for hydrogen production through electrolysis. Efficient reuse of condensate increases overall energy efficiency and reduces environmental impact.The study proposes a multi-stage treatment process: removal of iron oxides using an electromagnetic filter; decarbonization using a non-reagent neutralizer; and NOx removal through ammonium nitrate formation followed by membrane separation. Experimental research on a lab-scale model confirmed the effectiveness of the proposed system. Statistical analysis and standard testing methods been applied to validate results which confirming that the treated condensate meets quality standards for reuse in electrolysis and boiler applications. У статті розглянуто сучасні підходи до очищення кислого конденсату димових газів, що утворюється при роботі котелень на природному газі. Запропоновано комплексну технологію очищення, яка включає знезалізнення, декарбонізацію та видалення оксидів азоту з подальшим доочищенням до рівня дистильованої води. Проведено експериментальні дослідження та підтверджено ефективність запропонованої схеми для повторного використання очищеного конденсату, зокрема як живильної води або для використання у водневих електролізерах. Institute of Engineering Thermophysics of NAS of Ukraine 2025-09-30 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/654 10.31472/ttpe.3.2025.9 Thermophysics and Thermal Power Engineering; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 94-105 Теплофизика и Теплоэнергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 94-105 Теплофізика та Теплоенергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 94-105 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/654/571
spellingShingle Tselen, B. Ya.
Radchenko, N.L.
Ivanytskyi, G.K.
Nedbailo, A.E.
Shchepkin, V.I.
ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title_alt TECHNOLOGIES FOR UTILIZATION OF ACIDIC CONDENSATE FROM FLUE GASES. PRE-TREATMENT, DECARBONIZATION AND SUBSEQUENT USE
title_full ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title_fullStr ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title_full_unstemmed ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title_short ТЕХНОЛОГІЇ УТИЛІЗАЦІЇ КИСЛОГО КОНДЕНСАТУ ДИМОВИХ ГАЗІВ. ПОПЕРЕДНЄ ОЧИЩЕННЯ, ДЕКАРБОНІЗАЦІЯ ТА ПОДАЛЬШЕ ВИКОРИСТАННЯ
title_sort технології утилізації кислого конденсату димових газів. попереднє очищення, декарбонізація та подальше використання
url https://ihe.nas.gov.ua/index.php/journal/article/view/654
work_keys_str_mv AT tselenbya technologiesforutilizationofacidiccondensatefromfluegasespretreatmentdecarbonizationandsubsequentuse
AT radchenkonl technologiesforutilizationofacidiccondensatefromfluegasespretreatmentdecarbonizationandsubsequentuse
AT ivanytskyigk technologiesforutilizationofacidiccondensatefromfluegasespretreatmentdecarbonizationandsubsequentuse
AT nedbailoae technologiesforutilizationofacidiccondensatefromfluegasespretreatmentdecarbonizationandsubsequentuse
AT shchepkinvi technologiesforutilizationofacidiccondensatefromfluegasespretreatmentdecarbonizationandsubsequentuse
AT tselenbya tehnologííutilízacííkislogokondensatudimovihgazívpoperednêočiŝennâdekarbonízacíâtapodalʹševikoristannâ
AT radchenkonl tehnologííutilízacííkislogokondensatudimovihgazívpoperednêočiŝennâdekarbonízacíâtapodalʹševikoristannâ
AT ivanytskyigk tehnologííutilízacííkislogokondensatudimovihgazívpoperednêočiŝennâdekarbonízacíâtapodalʹševikoristannâ
AT nedbailoae tehnologííutilízacííkislogokondensatudimovihgazívpoperednêočiŝennâdekarbonízacíâtapodalʹševikoristannâ
AT shchepkinvi tehnologííutilízacííkislogokondensatudimovihgazívpoperednêočiŝennâdekarbonízacíâtapodalʹševikoristannâ