ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ

Objective: This study aims to explore the potential of Chlorella vulgaris as an efficient substrate for biomethanation, focusing on both liquid and dry biomass types. The research addresses the critical need for sustainable bioenergy sources and highlights the role of microalgae in bioenergy systems...

Full description

Saved in:
Bibliographic Details
Date:2025
Main Authors: Dombrovskiy, O.H., Traksler, I.S., Derkach, Ye.A., Bondar, A.V.
Format: Article
Language:Ukrainian
Published: Institute of Engineering Thermophysics of NAS of Ukraine 2025
Online Access:https://ihe.nas.gov.ua/index.php/journal/article/view/655
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Thermophysics and Thermal Power Engineering

Institution

Thermophysics and Thermal Power Engineering
_version_ 1856543882367467520
author Dombrovskiy, O.H.
Traksler, I.S.
Derkach, Ye.A.
Bondar, A.V.
author_facet Dombrovskiy, O.H.
Traksler, I.S.
Derkach, Ye.A.
Bondar, A.V.
author_sort Dombrovskiy, O.H.
baseUrl_str
collection OJS
datestamp_date 2026-01-01T09:32:51Z
description Objective: This study aims to explore the potential of Chlorella vulgaris as an efficient substrate for biomethanation, focusing on both liquid and dry biomass types. The research addresses the critical need for sustainable bioenergy sources and highlights the role of microalgae in bioenergy systems due to their high productivity, ability to capture CO₂, and compatibility with various bioprocesses. Tasks: Cultivate Chlorella vulgaris in a photobioreactor under controlled environmental conditions to obtain liquid and dry biomass samples. Conduct detailed analysis of the physical and chemical properties of liquid and dry biomass, including moisture content, organic matter composition, and energy potential. Perform batch anaerobic digestion experiments in a mesophilic regime to evaluate biogas and methane production from both biomass types. Compare and analyze the differences in biogas yields, methane content, and overall energy efficiency between the liquid and dry biomass. Assess the broader implications of integrating Chlorella vulgaris into biomethanation systems in terms of environmental sustainability and resource efficiency. Research Methods: The study employed a tubular photobioreactor (Algoliner PBR-100, Germany) for cultivating Chlorella vulgaris. Controlled parameters such as light intensity, temperature, and pH were maintained to ensure optimal growth conditions. Bold Basal Medium (BBM) was used as the cultivation medium. Biomass was harvested after a 21-day growth period and categorized into two types: liquid biomass (as-is) and dry biomass (dehydrated to a moisture content of 10-12%). Batch anaerobic digestion tests were conducted at 37°C for 30 days, using a batch reactor system. Biogas production and methane content were measured daily, and cumulative biogas yields were calculated. Moisture content and volatile solids (VS) of the biomass were determined using standard gravimetric and biochemical methods. Results: Moisture content analysis revealed a significant difference between liquid and dry biomass, with the latter being more concentrated in organic matter. Liquid biomass yielded approximately 430 L of biogas per kg of volatile solids, while dry biomass demonstrated a superior yield of 620 L per kg of volatile solids. Methane content in the biogas from dry biomass was higher (up to 60%) compared to the liquid form (55-58%), underscoring the enhanced efficiency of the dry substrate. The results highlight that Chlorella vulgaris biomass, especially in its dry form, is a viable and efficient substrate for biogas production. Conclusion: The findings emphasize the potential of Chlorella vulgaris as a high-performance feedstock for biomethanation, capable of yielding substantial amounts of biogas and methane. The integration of microalgae into bioenergy systems offers multiple benefits, including the utilization of CO₂ emissions, waste valorization, and enhanced energy output. This study contributes to the broader adoption of algae-based bioenergy strategies and paves the way for further optimization of cultivation and digestion processes.
first_indexed 2026-02-08T08:10:17Z
format Article
id oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-655
institution Thermophysics and Thermal Power Engineering
language Ukrainian
last_indexed 2026-02-08T08:10:17Z
publishDate 2025
publisher Institute of Engineering Thermophysics of NAS of Ukraine
record_format ojs
spelling oai:ojs2.ihenasgovua.s43.yourdomain.com.ua:article-6552026-01-01T09:32:51Z INTEGRATION OF CHLORELLA VULGARIS INTO PRODUCTION SYSTEMS: ENVIRONMENTAL AND TECHNOLOGICAL ASPECTS ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ Dombrovskiy, O.H. Traksler, I.S. Derkach, Ye.A. Bondar, A.V. Objective: This study aims to explore the potential of Chlorella vulgaris as an efficient substrate for biomethanation, focusing on both liquid and dry biomass types. The research addresses the critical need for sustainable bioenergy sources and highlights the role of microalgae in bioenergy systems due to their high productivity, ability to capture CO₂, and compatibility with various bioprocesses. Tasks: Cultivate Chlorella vulgaris in a photobioreactor under controlled environmental conditions to obtain liquid and dry biomass samples. Conduct detailed analysis of the physical and chemical properties of liquid and dry biomass, including moisture content, organic matter composition, and energy potential. Perform batch anaerobic digestion experiments in a mesophilic regime to evaluate biogas and methane production from both biomass types. Compare and analyze the differences in biogas yields, methane content, and overall energy efficiency between the liquid and dry biomass. Assess the broader implications of integrating Chlorella vulgaris into biomethanation systems in terms of environmental sustainability and resource efficiency. Research Methods: The study employed a tubular photobioreactor (Algoliner PBR-100, Germany) for cultivating Chlorella vulgaris. Controlled parameters such as light intensity, temperature, and pH were maintained to ensure optimal growth conditions. Bold Basal Medium (BBM) was used as the cultivation medium. Biomass was harvested after a 21-day growth period and categorized into two types: liquid biomass (as-is) and dry biomass (dehydrated to a moisture content of 10-12%). Batch anaerobic digestion tests were conducted at 37°C for 30 days, using a batch reactor system. Biogas production and methane content were measured daily, and cumulative biogas yields were calculated. Moisture content and volatile solids (VS) of the biomass were determined using standard gravimetric and biochemical methods. Results: Moisture content analysis revealed a significant difference between liquid and dry biomass, with the latter being more concentrated in organic matter. Liquid biomass yielded approximately 430 L of biogas per kg of volatile solids, while dry biomass demonstrated a superior yield of 620 L per kg of volatile solids. Methane content in the biogas from dry biomass was higher (up to 60%) compared to the liquid form (55-58%), underscoring the enhanced efficiency of the dry substrate. The results highlight that Chlorella vulgaris biomass, especially in its dry form, is a viable and efficient substrate for biogas production. Conclusion: The findings emphasize the potential of Chlorella vulgaris as a high-performance feedstock for biomethanation, capable of yielding substantial amounts of biogas and methane. The integration of microalgae into bioenergy systems offers multiple benefits, including the utilization of CO₂ emissions, waste valorization, and enhanced energy output. This study contributes to the broader adoption of algae-based bioenergy strategies and paves the way for further optimization of cultivation and digestion processes. У роботі досліджено ефективність використання мікроводорості Chlorella vulgaris як сировини для біометанізації. Проведено порівняння енергетичного потенціалу рідкої та висушеної біомаси, вирощеної у фотобіореакторі. Умови анаеробного зброджування в мезофільному режимі показали, що висушена біомаса забезпечує вищий вихід біогазу (620 л/кг СОР) порівняно з рідкою (430 л/кг СОР), з вмістом метану до 60%. Отримані результати підтверджують доцільність застосування Chlorella vulgaris у біоенергетиці як високопродуктивного та стабільного джерела органічної сировини. Institute of Engineering Thermophysics of NAS of Ukraine 2025-09-30 Article Article application/pdf https://ihe.nas.gov.ua/index.php/journal/article/view/655 10.31472/ttpe.3.2025.10 Thermophysics and Thermal Power Engineering; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 106-113 Теплофизика и Теплоэнергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 106-113 Теплофізика та Теплоенергетика; Vol 49 No 3 (2025): Thermophysics and Thermal Power Engineering; 106-113 2663-7235 uk https://ihe.nas.gov.ua/index.php/journal/article/view/655/572
spellingShingle Dombrovskiy, O.H.
Traksler, I.S.
Derkach, Ye.A.
Bondar, A.V.
ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title_alt INTEGRATION OF CHLORELLA VULGARIS INTO PRODUCTION SYSTEMS: ENVIRONMENTAL AND TECHNOLOGICAL ASPECTS
title_full ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title_fullStr ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title_full_unstemmed ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title_short ІНТЕГРАЦІЯ CHLORELLA VULGARIS В СИСТЕМУ ВИРОБНИЦТВА БІОМЕТАНУ: ЕКОЛОГІЧНІ ТА ТЕХНОЛОГІЧНІ АСПЕКТИ
title_sort інтеграція chlorella vulgaris в систему виробництва біометану: екологічні та технологічні аспекти
url https://ihe.nas.gov.ua/index.php/journal/article/view/655
work_keys_str_mv AT dombrovskiyoh integrationofchlorellavulgarisintoproductionsystemsenvironmentalandtechnologicalaspects
AT traksleris integrationofchlorellavulgarisintoproductionsystemsenvironmentalandtechnologicalaspects
AT derkachyea integrationofchlorellavulgarisintoproductionsystemsenvironmentalandtechnologicalaspects
AT bondarav integrationofchlorellavulgarisintoproductionsystemsenvironmentalandtechnologicalaspects
AT dombrovskiyoh íntegracíâchlorellavulgarisvsistemuvirobnictvabíometanuekologíčnítatehnologíčníaspekti
AT traksleris íntegracíâchlorellavulgarisvsistemuvirobnictvabíometanuekologíčnítatehnologíčníaspekti
AT derkachyea íntegracíâchlorellavulgarisvsistemuvirobnictvabíometanuekologíčnítatehnologíčníaspekti
AT bondarav íntegracíâchlorellavulgarisvsistemuvirobnictvabíometanuekologíčnítatehnologíčníaspekti