Збіжність методу екстраполяції з минулого та методу операторної екстраполяції

Одним из популярных направлений современного прикладного нелинейного анализа является исследование вариационных неравенств. Многие актуальные проблемы исследования операций и математической физики можно записать в форме вариационных неравенств. С появлением генерирующих соревновательных нейронных се...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2021
Автори: Semenov, Vladimir, Denisov, Sergei, Siryk, Dmitry, Kharkov, Oleg
Формат: Стаття
Мова:Russian
Опубліковано: V.M. Glushkov Institute of Cybernetics of NAS of Ukraine 2021
Теми:
Онлайн доступ:https://jais.net.ua/index.php/files/article/view/150
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems of Control and Informatics

Репозитарії

Problems of Control and Informatics
Опис
Резюме:Одним из популярных направлений современного прикладного нелинейного анализа является исследование вариационных неравенств. Многие актуальные проблемы исследования операций и математической физики можно записать в форме вариационных неравенств. С появлением генерирующих соревновательных нейронных сетей интерес к алгоритмам решения вариационных неравенств возник и в среде специалистов машинного обучения. Данная работа посвящена исследованию трех новых алгоритмов с брегмановской проекцией для решения вариационных неравенств в гильбертовом пространстве. Первый алгоритм — результат модификации двухэтапного брегмановского метода с помощью экономного регулирования величины шага, не требующего знания лепшицевой константы оператора. Второй алгоритм — алгоритм операторной экстраполяции, полученный заменой в методе Малицкого-Тама евклидовой метрики на дивергенцию Брегмана. Привлекательная черта алгоритма — всего одно вычисление на итерационном шаге проекции Брэгмана на допустимое множество. Третий алгоритм — адаптивный вариант второго, где используется правило обновления величины шага, не требующее знания лепшицевых констант и вычислений значений оператора в дополнительных точках. Для вариационных неравенств с псевдомонотонными, лепшицевыми и секвенционно слабо непрерывными операторами, действующими в гильбертовом пространстве, доказаны теоремы о сходимости методов.