Дослідження впливу запізнювання в одній математичній моделі динаміки світового розвитку
Динамике мирового развития посвящено достаточное количество работ. Но очень немногие из них имеют четкие абстрактные математические модели соответствующих процессов. Данная работа посвящена дальнейшему углублению и математической абстрактизации исследования процессов мирового развития. Проведен каче...
Gespeichert in:
| Datum: | 2021 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | Russian |
| Veröffentlicht: |
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
2021
|
| Schlagworte: | |
| Online Zugang: | https://jais.net.ua/index.php/files/article/view/168 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Problems of Control and Informatics |
Institution
Problems of Control and Informatics| Zusammenfassung: | Динамике мирового развития посвящено достаточное количество работ. Но очень немногие из них имеют четкие абстрактные математические модели соответствующих процессов. Данная работа посвящена дальнейшему углублению и математической абстрактизации исследования процессов мирового развития. Проведен качественный анализ линейной и модифицированной нелинейной модели посредством систем неоднородных дифференциальных уравнений. Вычислены их стационарные состояния, записаны явные аналитические решения. Впервые предложена модель с учетом фактора временного запаздывания, записанная в виде функционально-дифференциальных уравнений с отклонением аргумента. Показано, что при таком введении в модель запаздывающего аргумента систему можно свести к системе линейных неоднородных дифференциальных уравнений с постоянными коэффициентами без запаздывания, и на устойчивость стационарного состояния изучаемого равновесия системы будут влиять только линейные члены уравнений. , не содержащие отклонения аргумента. Этот факт хорошо соотносится с социально-экономической интерпретацией данной задачи. В дальнейшем работа будет направлена на изучение влияния не одного, а нескольких факторов временного запаздывания, когда модель будет представлена в виде системы функционально-дифференциальных уравнений с несколькими разными отклоняющимися аргументами в уравнениях, отвечающих за динамику конкретного процесса, являющегося отдельной составляющей общей динамики мирового развития. |
|---|