ЗАБЕЗПЕЧЕННЯ ТОЧНОСТІ ТА ПРОЗОРОСТІ НЕЧІТКОЇ МОДЕЛІ МАМДАНІ ПРИ НАВЧАННІ ЗА ЕКСПЕРИМЕНТАЛЬНИМИ ДАНИМИ

The typical violations of Mamdani-type fuzzy model that are produced while learning on experimental data, are described. The new learning scheme for Mamdani-type fuzzy model is proposed. The main features of that scheme are: 1) enlarged support of output variable fuzzy sets; 2) elimination of the co...

Full description

Saved in:
Bibliographic Details
Date:2007
Main Author: Shtovba, S.D.
Format: Article
Language:Ukrainian
Published: V.M. Glushkov Institute of Cybernetics of NAS of Ukraine 2007
Online Access:https://jais.net.ua/index.php/files/article/view/331
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Problems of Control and Informatics

Institution

Problems of Control and Informatics
Description
Summary:The typical violations of Mamdani-type fuzzy model that are produced while learning on experimental data, are described. The new learning scheme for Mamdani-type fuzzy model is proposed. The main features of that scheme are: 1) enlarged support of output variable fuzzy sets; 2) elimination of the cores of extreme fuzzy terms from tuning parameters; 3) insertion of constraint on linear order of fuzzy sets in frame of the term-set. The computational experiments show that the new learning scheme does not violate the fuzzy model transparency and at the same time the fuzzy model accuracy is no worse in comparison with typical learning.