МЕТОД РОЗВ’ЯЗАННЯ ЗАДАЧ НЕЛІНІЙНОГО ПРОГРАМУВАННЯ ІЗ ЗАСТОСУВАННЯМ БАЗИСУ ЗМІННОЇ РОЗМІРНОСТІ
Approximation programming method with gradual increasing/decreasing basis dimension is considered. If solution is found in the vertex of limiting polyhedron, i.e. on the boundary of intersection of n-limiting hyperplane (n — dimension of space of searched variables), then the basis dimension reaches...
Збережено в:
| Дата: | 2006 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
2006
|
| Онлайн доступ: | https://jais.net.ua/index.php/files/article/view/376 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Problems of Control and Informatics |
Репозитарії
Problems of Control and Informatics| Резюме: | Approximation programming method with gradual increasing/decreasing basis dimension is considered. If solution is found in the vertex of limiting polyhedron, i.e. on the boundary of intersection of n-limiting hyperplane (n — dimension of space of searched variables), then the basis dimension reaches n; if the solution is on the faces or edges of limiting polyhedron, then basis dimension is decreased. If the solution is found inside admissible domain, then basis dimension is zero and X-trace on the last steps corresponds to the fastest descent (ascent) algorithm. The other feature of the method is the application of quadratic approximation of discrepancy Dji(X) variation along admissible appropriate direction — ray s — linear combination of edges of current basis cone. The quadratic approximation method enables us to increase the step length in comparison with the simplest methods of approximation programming. |
|---|