ПАРАМЕТРИЧНИЙ СИНТЕЗ ЦИФРОВОГО СТАБІЛІЗАТОРА КОСМІЧНОЇ СТУПЕНІ РАКЕТИ-НОСІЯ З РІДИННИМ РЕАКТИВНИМ ДВИГУНОМ НА АКТИВНІЙ ДІЛЯНЦІ ТРАЄКТОРІЇ ПОЛЬОТУ
The problem of choosing the values of the variable parameters of the digital stabilizer of the space stage of a booster rocket with a liquid engine in the active part of the flight path, which ensures the minimum value of the additive integral quadratic functional with unknown weight coefficients, c...
Gespeichert in:
| Datum: | 2020 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
2020
|
| Schlagworte: | |
| Online Zugang: | https://jais.net.ua/index.php/files/article/view/471 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Problems of Control and Informatics |
Institution
Problems of Control and Informatics| Zusammenfassung: | The problem of choosing the values of the variable parameters of the digital stabilizer of the space stage of a booster rocket with a liquid engine in the active part of the flight path, which ensures the minimum value of the additive integral quadratic functional with unknown weight coefficients, calculated on the basis of the mathematical model of the perturbed motion of a closed stabilization system containing ordinary differential equations, and equations in finite differences, with subsequent using software products Optimization Toolbox in the MATLAB interactive environment or Minimize in the Math CAD interactive environment and finding the uncertain weighting coefficients of the additive functional. This approach allows you to abandon the use of the method of «frozen coefficients» and leads to a decrease in static error and increase of the speed of a closed stabilization system. Using the example of the C5M space stage of the «Cyclone-3» launch vehicle, it was shown that solving the problem of parametric synthesis of a digital stabilizer using the method described above allows up to 25 % increase in the system’s speed, several-fold increase in the stage stabilization accuracy and significantly weaken the effect of fluid oscillations in fuel and oxidizer tanks for stabilized stage motion. To reduce the static error of the closed stabilization system and to give it the property of invariance to the action of external perturbations, the values of the variable parameters of the stabilizer should be chosen variable in time along the active section of the flight path of the launch vehicle. |
|---|