Про підвищення рівня адекватності результатів оцінювання учбових проектів на основі параметричної релаксації методу парних порівнянь

A problem of automated assessing of students’ study projects is regarded. A heuristic algorithm based on fuzzy estimating of projects and on pairwise comparisons among them is proposed. For improving adequacy and naturalness of grades, an approach based on introducing a parameter named relaxation pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2023
Hauptverfasser: Oletsky, Alexey, Mahno, Mikhail
Format: Artikel
Sprache:Russian
Veröffentlicht: V.M. Glushkov Institute of Cybernetics of NAS of Ukraine 2023
Schlagworte:
Online Zugang:https://jais.net.ua/index.php/files/article/view/52
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Problems of Control and Informatics

Institution

Problems of Control and Informatics
Beschreibung
Zusammenfassung:A problem of automated assessing of students’ study projects is regarded. A heuristic algorithm based on fuzzy estimating of projects and on pairwise comparisons among them is proposed. For improving adequacy and naturalness of grades, an approach based on introducing a parameter named relaxation parameter was suggested in the paper. This enables to reduce the spread between maximum and minimum values of projects in comparison with the one in the standard scale suggested by T. Saati. Reasonable values of this parameter were selected experimentally. For estimating the best alternative, a center of mass of a fuzzy max-min composition should be calculated. An estimation algorithm for a case of non-transitive preferences based on getting strongly connected components and on pairwise comparisons between them is also suggested. In this case, relaxation parameters should be chosen separately for each subtask. So the combined technique of evaluating alternatives proposed in the paper depends of the following parameters: relaxation parameters for pairwise comparisons matrices within each strongly connected components; relaxation parameter for pairwise comparisons matrices among strongly connected components; membership function for describing the best alternative.