КЕРУВАННЯ КУТОВИМ РУХОМ КОСМІЧНОГО АПАРАТА ЗА ВЕКТОРНИМИ ВИМІРАМИ
The tasks of spacecraft (SC) reorientation are the tasks of controlling the angular motion of the spacecraft body around its own mass center. Today these tasks are very topical ones because of the continually growing requirements to the dynamic characteristics of the SC spatial maneuvers. The succes...
Збережено в:
| Дата: | 2025 |
|---|---|
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
2025
|
| Теми: | |
| Онлайн доступ: | https://jais.net.ua/index.php/files/article/view/643 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Problems of Control and Informatics |
Репозитарії
Problems of Control and Informatics| Резюме: | The tasks of spacecraft (SC) reorientation are the tasks of controlling the angular motion of the spacecraft body around its own mass center. Today these tasks are very topical ones because of the continually growing requirements to the dynamic characteristics of the SC spatial maneuvers. The success of solving the tasks of SC angular motion control significantly depends on the chosen model of CS angular motion. The most widespread model among the diverse models of angular motion is the one, where the dynamics is described with the Euler’s equation, and the kinematics is described with a kinematical equation in Rodrigo–Hamilton parameters. The advantage of this model is the absence of computational peculiarities and the minimal redundancy of the state vector. The drawback is that the model is non-linear, which hampers the synthesis of control laws. In addition to this model, to build a control can be used a motion model in the form of a second-order differential equations system for the Rodrigo–Hamilton parameters [13]. The basis of this model is formed with a dynamic equation of point movement along the sphere. Using this approach, the dynamic model of vector motion in coordinate system rigidly attached to main SC body has been obtained. The two tasks of constructing the assigned SC orientation directly on the vector measurements without defining the orientation quaternion have been resolved: — the task of single-axis orientation; — the task of three-axis orientation directly on the vector measurements. Wherein, in contrast to the well-known works [11, 12], where, to solve the task of single-axis orientation, the straight Lyapunov’s method had been applied, the task of finding the required control was managed to be reduced to the trivial task of finding the control for the linear system with constant coefficients. The results of computer simulation for proving the sound-ness of proposed algorithms were provided. The work can be useful for the developers of CS control systems. |
|---|