ПРО НАБЛИЖЕННЯ В СЕРЕДНЬОМУ КЛАСІВ ФУНКЦІЙ З ДРОБОВИМИ ПОХІДНИМИ ЇХ ІНТЕГРАЛАМИ АБЕЛЯ–ПУССОНА

The constant development of the of applied mathematics is due to its close connection with the fundamental directions of research in the related fields of natural sciences. One of the most important areas of modern science is the study of linear and nonlinear mathematical game models of various phen...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автор: Zhyhallo, T.V.
Формат: Стаття
Мова:English
Опубліковано: V.M. Glushkov Institute of Cybernetics of NAS of Ukraine 2025
Теми:
Онлайн доступ:https://jais.net.ua/index.php/files/article/view/669
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Problems of Control and Informatics

Репозитарії

Problems of Control and Informatics
Опис
Резюме:The constant development of the of applied mathematics is due to its close connection with the fundamental directions of research in the related fields of natural sciences. One of the most important areas of modern science is the study of linear and nonlinear mathematical game models of various phenomena and processes of nature. The emergence of such models is due to the use in modern physics and techniques of influence on matter of electric fields of high intensity, beams of high-energy particles, powerful laser coherent radiation of shock waves of high intensity and powerful heat fluxes. The basis of such models is the differential equations in partial derivatives, one of which is the equation of the elliptic type, describing the stationary processes of different physical nature. The simplest and most widespread equation of the elliptic type is the Laplace equation whose solution, under given conditions, on the boundary of the considered region, is the well-known Abel–Poisson integral. Approximate properties of the solution of an elliptic boundary value problem with given boundary conditions at the boundary of the domain on classes of functions with fractional derivatives are investigated. The solution to this problem finds its application in the study and further application of methods of resolving functions for game dynamics problems. Here we found the asymptotic equalities for the exact upper bounds of the deviations of classes of functions with fractional derivatives from their Abel–Poisson integrals in the integral metric. We establish the equivalence of the approximation characteristics of solutions of an elliptic boundary value problem with given boundary conditions at the boundary of domain both in the uniform and in the integral metrics for classes of functions with fractional derivatives.