КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ
DOI: https://doi.org/10.15407/itm2025.01.036 In the development of Earth remote sensing (ERS) over the last decade, small spacecraft constellations owned by private companies have played a leading role. The analysis of these constellations carried out in this study allowed one to identify trends in...
Saved in:
| Date: | 2025 |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | Ukrainian |
| Published: |
текст 3
2025
|
| Subjects: | |
| Online Access: | https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/93 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Technical Mechanics |
Institution
Technical Mechanics| id |
oai:ojs2.journal-itm.dp.ua:article-93 |
|---|---|
| record_format |
ojs |
| institution |
Technical Mechanics |
| baseUrl_str |
|
| datestamp_date |
2025-11-04T12:05:52Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
дистанційне зондування мультиспектральна зйомка гіперспектральна зйомка лідар радарна зйомка теплова зйомка наднизькі орбіти космічна ситуаційна обізнаність. |
| spellingShingle |
дистанційне зондування мультиспектральна зйомка гіперспектральна зйомка лідар радарна зйомка теплова зйомка наднизькі орбіти космічна ситуаційна обізнаність. VOLOSHENIUK, O. L. KHRAMOV, D. O. КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| topic_facet |
дистанційне зондування мультиспектральна зйомка гіперспектральна зйомка лідар радарна зйомка теплова зйомка наднизькі орбіти космічна ситуаційна обізнаність. remote sensing multispectral imagery hyperspectral imagery lidar radar imagery thermal imagery ultra-low orbit space situational awareness. |
| format |
Article |
| author |
VOLOSHENIUK, O. L. KHRAMOV, D. O. |
| author_facet |
VOLOSHENIUK, O. L. KHRAMOV, D. O. |
| author_sort |
VOLOSHENIUK, O. L. |
| title |
КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| title_short |
КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| title_full |
КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| title_fullStr |
КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| title_full_unstemmed |
КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ |
| title_sort |
комерційні угруповання малих космічних апаратів дистанційного зондування землі |
| title_alt |
COMMERCIAL CONSTELLATIONS OF SMALL SATELLITES FOR EARTH REMOTE SENSING |
| description |
DOI: https://doi.org/10.15407/itm2025.01.036
In the development of Earth remote sensing (ERS) over the last decade, small spacecraft constellations owned by private companies have played a leading role. The analysis of these constellations carried out in this study allowed one to identify trends in their development for the coming years and possibilities for data collection and processing. Since 2011, a many-fold increase in the number and size of commercial constellations has been observed. It is expected that by the end of 2025 the number of constellations will have reached 81, which is almost 12 times greater than in 2015. The number of multispectral optical imaging satellites is growing at the highest rate. The largest number of new constellations will be involved in thermal infrared imaging and hyperspectral optical imaging. In the number and size of constellations, the leading countries are the USA and China, and the leading companies are Planet Labs (USA) and Chang Guang Satellite Technology (China). Although the number of countries developing their own small-satellite constellations is steadily increasing, the constellations of the leading countries are growing at a higher rate. Two thirds of the multispectral optical imaging constellations are designed to collect data with a spatial resolution greater than 1 m, while three companies collect data with a 30 cm resolution. The number of radar satellites is increasing, while the number of constellations is almost unchanged. Most of the radar satellites work in the X-band with a resolution up to 50 cm, while ICEYE (Finland/USA) and Umbra-SAR (USA) offer radar data with a 25 cm resolution. The use of very low orbits to improve the quality of imagery is under active development. Investments into extraterrestrial imaging to track space objects in near-Earth orbits to prevent possible threats to satellite constellations are increasing. The introduction of onboard data processing facilities and successful experiments on laser communication between satellites open avenues for obtaining targeted ERS information in near-real time. The use of GNSS signals for ERS purposes has become widespread, thus resulting in constellations of dozens of small commercial weather satellites.
REFERENCES
1. Garg P. K. Remote Sensing: Theory and Applications. Boston: Mercury Learning and Information, 2024.https://doi.org/10.1515/9781501522840
2. Kramer H. J. Observation of the Earth and Its Environment. Berlin: Springer, 2002.https://doi.org/10.1007/978-3-642-56294-5
3. Bryce Space and Technology. Smallsats by the Numbers 2020. URL: https://brycetech.com/reports/report-documents/Bryce_Smallsats_2020.pdf (Last accessed on January 9, 2025).
4. Volosheniuk O. L. Global trends in the development of low-orbit space systems for optoelectronic Earth observation. Teh. Meh. 2020. No. 3. Pp. 39−53. (In Ukrainian).https://doi.org/10.15407/itm2020.03.039
5. Volosheniuk O. L., Pyrozhenko O. O. Requirements for the parameters of synthetic aperture radars onboard small satellites for Earth remote sensing. Teh. Meh. 2024. No. 4. Pp. 55−65.https://doi.org/10.15407/itm2024.02.055
6. Khramov D. O., Volosheniuk O. L. Analysis of the state of the art and the trends in the development of the target characteristics of orbital constellations of small agriculture-oriented Earth remote sensing spacecraft. Teh. Meh. 2023. No. 4. Pp. 31-39. (In Ukrainian).https://doi.org/10.15407/itm2023.04.031
7. Botelho R. C., Xavier A. L. A Unified satellite taxonomy proposal based on mass and size. Advances in Aerospace Science and Technology. 2019. V. 4. No. 4. Pp. 57-73.https://doi.org/10.4236/aast.2019.44005
8. Kramer H. J., Cracknell A. P. An overview of small satellites in remote sensing. International Journal of Remote Sensing, 2008. V. 29. No. 15. Pp. 4285-4337.https://doi.org/10.1080/01431160801914952
9. Khramov D. Constellations of small commercial earth remote sensing satellites (2011 - 2025) [Data set]. Zenodo.
10. ICEYE Dwell modes. URL: https://www.iceye.com/sar-data/imaging-modes/dwell (Last accessed on January 9, 2025).
11. Laurila P. CEYE SAR Videos Published: Technical Insights and Highlights. URL: https://www.iceye.com/blog/iceye-sar-videos-published-technical-insights-and-highlights (Last accessed on January 9, 2025).
12. ICEYE SAR Video. URL: https://sar.iceye.com/5.2.4/productFormats/vid/ (Last accessed on January 9, 2025).
13. Bacon A., Olivier B. Skimsats: bringing down the cost of Earth observation. URL: https://link.springer.com/chapter/10.1007/978-3-319-34024-1_1 (Last accessed on January 9, 2025).
14. Werner D. How low can satellites go? VLEO entrepreneurs plan to find out. SpaceNews. URL: https://spacenews.com/how-low-can-satellites-go-vleo-entrepreneurs-plan-to-find-out/ (Last accessed on January 9, 2025).
15. DARPA Launch Challenge. URL: https://www.darpa.mil/launchchallenge (Last accessed on January 9, 2025).
16. JAXA terminates the operation of TSUBAME, a Super Low Altitude Test Satellite (SLATS). URL: https://global.jaxa.jp/press/2019/10/20191002a.html (Last accessed on January 9, 2025).
17. Thales Alenia Space and QinetiQ to pave the way for small multimission satellites in Very Low Earth Orbit. URL: https://www.thalesgroup.com/en/worldwide/space/press-release/thales-alenia-space-and-qinetiq-pave-way-small-multimission (Last accessed on January 9, 2025).
18. Foust J. Redwire announces second VLEO satellite platform. SpaceNews. URL: https://spacenews.com/redwire-announces-second-vleo-satellite-platform/ (Last accessed on January 9, 2025).
19. Haishao-1. URL: https://mp.weixin.qq.com/s/6AnwloNaqiuavx6D6fJMRg (Last accessed on January 9, 2025).
20. Maxar. Non-Earth Imaging. URL: https://www.maxar.com/maxar-intelligence/products/non-earth-imaging (Last accessed on January 9, 2025).
21. Flewelling B. Op-Ed: NATO Must Prioritize Tracking, Info Sharing in Orbit. Payload. URL: https://payloadspace.com/op-ed-nato-must-prioritize-tracking-info-sharing-in-orbit/ (Last accessed on January 9, 2025).
22. ESA - Φsat-2. URL: https://www.esa.int/Applications/Observing_the_Earth/Phsat-2 (Last accessed on January 9, 2025).
23. Chen J. et al. A remote sensing data transmission strategy based on the combination of satellite-ground link and GEO relay under dynamic topology. Future Generation Computer Systems. 2023. No. 145. Pp. 337-353.https://doi.org/10.1016/j.future.2023.02.016
24. Zhang P. et al. Near real-time remote sensing based on satellite Internet: Architectures, key techniques, and experimental progress. Aerospace. 2024. V. 11. No. 2. P. 167. https://doi.org/10.3390/aerospace11020167
25. SDA. Optical Communications Terminal (OCT). Standard Version 3.0. URL: https://www.sda.mil/wp-content/uploads/2022/04/SDA-OCT-Standard-v3.0.pdf (Last accessed on January 9, 2025).
26. Chinese company completes ultra-high-speed remote sensing image laser transmission test. Xinhua. URL: https://english.news.cn/20241229/bf791f77f5ba4d44b6bff61f9af0087f/c.html (Last accessed on January 9, 2025).
27. Video shows Chinese Satellite has tracked a seeming F22 fighter jet flying through sky. Infoworld. URL: https://www.youtube.com/watch?v=VxKSJck7gls (Last accessed on January 9, 2025).
28. Sky Constellation Technology Validation Star Planned for Launch This Year: 300 Satellites to be Grouped in the Network. URL: https://tech.ifeng.com/c/8Z6DNqUpQcP (Last accessed on January 9, 2025).
29. Rodriguez-Alvarez N., Munoz-Martin J. F., Morris M. Latest advances in the Global Navigation Satellite System-Reflectometry (GNSS-R) Field. Remote Sens. 2023. No. 15. Pp. 2157.https://doi.org/10.3390/rs15082157
30. Garrison J. L. et al. SNOOPI: Demonstrating Earth remote sensing using P-band signals of opportunity (SoOp) on a CubeSat. Advances in Space Research, 2024. V. 73. No. 6. Pp. 2855-2879.https://doi.org/10.1016/j.asr.2023.10.050
31. Ho S. C. et al. Wideband ocean altimetry using Ku-band and K-band satellite signals of opportunity: Proof of concept. IEEE Geoscience and Remote Sensing Letters. 2019. V. 16. No. 7. Pp. 1012-1016.https://doi.org/10.1109/LGRS.2019.2891976
32. Dmytryszyn M., Crook M., Sands T. Lasers for satellite uplinks and downlinks. Science. 2021. V. 3. No. 1. P. 4.https://doi.org/10.3390/sci3010004
33. Werner D. GeoOptics, PlanetIQ and Spire to supply NOAA with space weather data. SpaceNews. URL: https://spacenews.com/noaa-cwdp-space-weather/ (Last accessed on January 9, 2025).
34. WMO. Data from commercial meteorological small satellites were allowed to enter China's meteorological operational system for the first time. URL: https://wmo.int/media/news-from-members/data-from-commercial-meteorological-small-satellites-were-allowed-enter-chinas-meteorological (Last accessed on January 9, 2025).
35. Erwin S. Tomorrow.io gets DoD contract to launch two microwave weather sensor satellites. SpaceNews. URL: https://spacenews.com/tomorrow-io-gets-dod-contract-to-launch-two-microwave-weather-sensor-satellites/ (Last accessed on January 9, 2025).
36. Muon Space Establishes Communications, Confirms Health of Weather Satellite. URL: https://www.muonspace.com/press/muon-space-establishes-communications-confirms-health-of-weather-satellite (Last accessed on January 9, 2025).
|
| publisher |
текст 3 |
| publishDate |
2025 |
| url |
https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/93 |
| work_keys_str_mv |
AT volosheniukol commercialconstellationsofsmallsatellitesforearthremotesensing AT khramovdo commercialconstellationsofsmallsatellitesforearthremotesensing AT volosheniukol komercíjníugrupovannâmalihkosmíčnihaparatívdistancíjnogozonduvannâzemlí AT khramovdo komercíjníugrupovannâmalihkosmíčnihaparatívdistancíjnogozonduvannâzemlí |
| first_indexed |
2025-09-24T17:27:28Z |
| last_indexed |
2025-11-05T02:41:41Z |
| _version_ |
1847916496549838848 |
| spelling |
oai:ojs2.journal-itm.dp.ua:article-932025-11-04T12:05:52Z COMMERCIAL CONSTELLATIONS OF SMALL SATELLITES FOR EARTH REMOTE SENSING КОМЕРЦІЙНІ УГРУПОВАННЯ МАЛИХ КОСМІЧНИХ АПАРАТІВ ДИСТАНЦІЙНОГО ЗОНДУВАННЯ ЗЕМЛІ VOLOSHENIUK, O. L. KHRAMOV, D. O. дистанційне зондування, мультиспектральна зйомка, гіперспектральна зйомка, лідар, радарна зйомка, теплова зйомка, наднизькі орбіти, космічна ситуаційна обізнаність. remote sensing, multispectral imagery, hyperspectral imagery, lidar, radar imagery, thermal imagery, ultra-low orbit, space situational awareness. DOI: https://doi.org/10.15407/itm2025.01.036 In the development of Earth remote sensing (ERS) over the last decade, small spacecraft constellations owned by private companies have played a leading role. The analysis of these constellations carried out in this study allowed one to identify trends in their development for the coming years and possibilities for data collection and processing. Since 2011, a many-fold increase in the number and size of commercial constellations has been observed. It is expected that by the end of 2025 the number of constellations will have reached 81, which is almost 12 times greater than in 2015. The number of multispectral optical imaging satellites is growing at the highest rate. The largest number of new constellations will be involved in thermal infrared imaging and hyperspectral optical imaging. In the number and size of constellations, the leading countries are the USA and China, and the leading companies are Planet Labs (USA) and Chang Guang Satellite Technology (China). Although the number of countries developing their own small-satellite constellations is steadily increasing, the constellations of the leading countries are growing at a higher rate. Two thirds of the multispectral optical imaging constellations are designed to collect data with a spatial resolution greater than 1 m, while three companies collect data with a 30 cm resolution. The number of radar satellites is increasing, while the number of constellations is almost unchanged. Most of the radar satellites work in the X-band with a resolution up to 50 cm, while ICEYE (Finland/USA) and Umbra-SAR (USA) offer radar data with a 25 cm resolution. The use of very low orbits to improve the quality of imagery is under active development. Investments into extraterrestrial imaging to track space objects in near-Earth orbits to prevent possible threats to satellite constellations are increasing. The introduction of onboard data processing facilities and successful experiments on laser communication between satellites open avenues for obtaining targeted ERS information in near-real time. The use of GNSS signals for ERS purposes has become widespread, thus resulting in constellations of dozens of small commercial weather satellites. REFERENCES 1. Garg P. K. Remote Sensing: Theory and Applications. Boston: Mercury Learning and Information, 2024.https://doi.org/10.1515/9781501522840 2. Kramer H. J. Observation of the Earth and Its Environment. Berlin: Springer, 2002.https://doi.org/10.1007/978-3-642-56294-5 3. Bryce Space and Technology. Smallsats by the Numbers 2020. URL: https://brycetech.com/reports/report-documents/Bryce_Smallsats_2020.pdf (Last accessed on January 9, 2025). 4. Volosheniuk O. L. Global trends in the development of low-orbit space systems for optoelectronic Earth observation. Teh. Meh. 2020. No. 3. Pp. 39−53. (In Ukrainian).https://doi.org/10.15407/itm2020.03.039 5. Volosheniuk O. L., Pyrozhenko O. O. Requirements for the parameters of synthetic aperture radars onboard small satellites for Earth remote sensing. Teh. Meh. 2024. No. 4. Pp. 55−65.https://doi.org/10.15407/itm2024.02.055 6. Khramov D. O., Volosheniuk O. L. Analysis of the state of the art and the trends in the development of the target characteristics of orbital constellations of small agriculture-oriented Earth remote sensing spacecraft. Teh. Meh. 2023. No. 4. Pp. 31-39. (In Ukrainian).https://doi.org/10.15407/itm2023.04.031 7. Botelho R. C., Xavier A. L. A Unified satellite taxonomy proposal based on mass and size. Advances in Aerospace Science and Technology. 2019. V. 4. No. 4. Pp. 57-73.https://doi.org/10.4236/aast.2019.44005 8. Kramer H. J., Cracknell A. P. An overview of small satellites in remote sensing. International Journal of Remote Sensing, 2008. V. 29. No. 15. Pp. 4285-4337.https://doi.org/10.1080/01431160801914952 9. Khramov D. Constellations of small commercial earth remote sensing satellites (2011 - 2025) [Data set]. Zenodo. 10. ICEYE Dwell modes. URL: https://www.iceye.com/sar-data/imaging-modes/dwell (Last accessed on January 9, 2025). 11. Laurila P. CEYE SAR Videos Published: Technical Insights and Highlights. URL: https://www.iceye.com/blog/iceye-sar-videos-published-technical-insights-and-highlights (Last accessed on January 9, 2025). 12. ICEYE SAR Video. URL: https://sar.iceye.com/5.2.4/productFormats/vid/ (Last accessed on January 9, 2025). 13. Bacon A., Olivier B. Skimsats: bringing down the cost of Earth observation. URL: https://link.springer.com/chapter/10.1007/978-3-319-34024-1_1 (Last accessed on January 9, 2025). 14. Werner D. How low can satellites go? VLEO entrepreneurs plan to find out. SpaceNews. URL: https://spacenews.com/how-low-can-satellites-go-vleo-entrepreneurs-plan-to-find-out/ (Last accessed on January 9, 2025). 15. DARPA Launch Challenge. URL: https://www.darpa.mil/launchchallenge (Last accessed on January 9, 2025). 16. JAXA terminates the operation of TSUBAME, a Super Low Altitude Test Satellite (SLATS). URL: https://global.jaxa.jp/press/2019/10/20191002a.html (Last accessed on January 9, 2025). 17. Thales Alenia Space and QinetiQ to pave the way for small multimission satellites in Very Low Earth Orbit. URL: https://www.thalesgroup.com/en/worldwide/space/press-release/thales-alenia-space-and-qinetiq-pave-way-small-multimission (Last accessed on January 9, 2025). 18. Foust J. Redwire announces second VLEO satellite platform. SpaceNews. URL: https://spacenews.com/redwire-announces-second-vleo-satellite-platform/ (Last accessed on January 9, 2025). 19. Haishao-1. URL: https://mp.weixin.qq.com/s/6AnwloNaqiuavx6D6fJMRg (Last accessed on January 9, 2025). 20. Maxar. Non-Earth Imaging. URL: https://www.maxar.com/maxar-intelligence/products/non-earth-imaging (Last accessed on January 9, 2025). 21. Flewelling B. Op-Ed: NATO Must Prioritize Tracking, Info Sharing in Orbit. Payload. URL: https://payloadspace.com/op-ed-nato-must-prioritize-tracking-info-sharing-in-orbit/ (Last accessed on January 9, 2025). 22. ESA - Φsat-2. URL: https://www.esa.int/Applications/Observing_the_Earth/Phsat-2 (Last accessed on January 9, 2025). 23. Chen J. et al. A remote sensing data transmission strategy based on the combination of satellite-ground link and GEO relay under dynamic topology. Future Generation Computer Systems. 2023. No. 145. Pp. 337-353.https://doi.org/10.1016/j.future.2023.02.016 24. Zhang P. et al. Near real-time remote sensing based on satellite Internet: Architectures, key techniques, and experimental progress. Aerospace. 2024. V. 11. No. 2. P. 167. https://doi.org/10.3390/aerospace11020167 25. SDA. Optical Communications Terminal (OCT). Standard Version 3.0. URL: https://www.sda.mil/wp-content/uploads/2022/04/SDA-OCT-Standard-v3.0.pdf (Last accessed on January 9, 2025). 26. Chinese company completes ultra-high-speed remote sensing image laser transmission test. Xinhua. URL: https://english.news.cn/20241229/bf791f77f5ba4d44b6bff61f9af0087f/c.html (Last accessed on January 9, 2025). 27. Video shows Chinese Satellite has tracked a seeming F22 fighter jet flying through sky. Infoworld. URL: https://www.youtube.com/watch?v=VxKSJck7gls (Last accessed on January 9, 2025). 28. Sky Constellation Technology Validation Star Planned for Launch This Year: 300 Satellites to be Grouped in the Network. URL: https://tech.ifeng.com/c/8Z6DNqUpQcP (Last accessed on January 9, 2025). 29. Rodriguez-Alvarez N., Munoz-Martin J. F., Morris M. Latest advances in the Global Navigation Satellite System-Reflectometry (GNSS-R) Field. Remote Sens. 2023. No. 15. Pp. 2157.https://doi.org/10.3390/rs15082157 30. Garrison J. L. et al. SNOOPI: Demonstrating Earth remote sensing using P-band signals of opportunity (SoOp) on a CubeSat. Advances in Space Research, 2024. V. 73. No. 6. Pp. 2855-2879.https://doi.org/10.1016/j.asr.2023.10.050 31. Ho S. C. et al. Wideband ocean altimetry using Ku-band and K-band satellite signals of opportunity: Proof of concept. IEEE Geoscience and Remote Sensing Letters. 2019. V. 16. No. 7. Pp. 1012-1016.https://doi.org/10.1109/LGRS.2019.2891976 32. Dmytryszyn M., Crook M., Sands T. Lasers for satellite uplinks and downlinks. Science. 2021. V. 3. No. 1. P. 4.https://doi.org/10.3390/sci3010004 33. Werner D. GeoOptics, PlanetIQ and Spire to supply NOAA with space weather data. SpaceNews. URL: https://spacenews.com/noaa-cwdp-space-weather/ (Last accessed on January 9, 2025). 34. WMO. Data from commercial meteorological small satellites were allowed to enter China's meteorological operational system for the first time. URL: https://wmo.int/media/news-from-members/data-from-commercial-meteorological-small-satellites-were-allowed-enter-chinas-meteorological (Last accessed on January 9, 2025). 35. Erwin S. Tomorrow.io gets DoD contract to launch two microwave weather sensor satellites. SpaceNews. URL: https://spacenews.com/tomorrow-io-gets-dod-contract-to-launch-two-microwave-weather-sensor-satellites/ (Last accessed on January 9, 2025). 36. Muon Space Establishes Communications, Confirms Health of Weather Satellite. URL: https://www.muonspace.com/press/muon-space-establishes-communications-confirms-health-of-weather-satellite (Last accessed on January 9, 2025). DOI: https://doi.org/10.15407/itm2025.01.036 У розвитку дистанційного зондування Землі (ДЗЗ) з космосу за останні десять років провідну роль відіграють угруповання малих космічних апаратів (КА), що належать приватним компаніям. Аналіз подібних угруповань, проведений у цьому дослідженні, дав змогу виявити тенденції їх розвитку на найближчі роки, а також появу нових можливостей збирання та оброблення даних. У період 2011–2025 рр. спостерігається багаторазове зростання кількості та чисельності комерційних угруповань. Очікується, що до кінця 2025 р. на орбіті працюватиме 81 угруповання – майже в 12 разів більше, ніж у 2015 р. Найшвидше збільшується чисельність КА мультиспектральної оптичної зйомки. Найбільше нових угруповань з'явиться в галузі теплової інфрачервоної зйомки та гіперспектральної оптичної зйомки. Лідерами за кількістю угруповань і їхньою чисельністю є США і Китай, а серед компаній – Planet Labs (США) і Chang Guang Satellite Technology (Китай). Хоча кількість країн, що створюють власні угруповання малих КА ДЗЗ, постійно збільшується, угруповання країн-лідерів зростають вищими темпами. Дві третіх угруповань мультиспектральної оптичної зйомки призначені для збирання даних із просторовою роздільною здатністю понад 1 м, а три компанії забезпечують збирання даних із роздільною здатністю 30 см. Збільшується чисельність радарних КА за майже незмінної кількості угруповань. Більшість радарних КА ведуть спостереження в Х-діапазоні з роздільною здатністю до 50 см, а компанії ICEYE (Фінляндія/США) і Umbra-SAR (США) пропонують радарні дані з роздільною здатністю 25 см. Активно розвивається напрямок з використання наднизьких орбіт для підвищення якості зйомки. Збільшуються інвестиції в позаземну зйомку для відстеження космічних об'єктів на навколоземних орбітах з метою запобігання можливих загроз супутниковим угрупованням. Впровадження засобів обробки даних на борту КА та успішні експерименти з лазерного зв'язку між КА відкривають перспективи отримання цільової інформації ДЗЗ у режимі, близькому до реального часу. Значно поширилось використання сигналів ГНСС для цілей ДЗЗ. Це призвело до появи угруповань, що складаються з десятків малих комерційних метеосупутників. ПОСИЛАННЯ 1. Garg P. K. Remote Sensing: Theory and Applications. Boston, Mercury Learning and Information, 2024. https://doi.org/10.1515/9781501522840 2. Kramer H. J. Observation of the Earth and Its Environment. Berlin, Springer, 2002. https://doi.org/10.1007/978-3-642-56294-5 3. Bryce Space and Technology. Smallsats by the Numbers 2020. URL: https://brycetech.com/reports/report-documents/Bryce_Smallsats_2020.pdf (дата звернення: 09.01.2025). 4. Волошенюк О. Л. Світові тенденції розвитку низькоорбітальних космічних систем оптико-електронного спостереження Землі. Технічна механика. 2020. № 3. С. 39−53. https://doi.org/10.15407/itm2020.03.039 5. Volosheniuk O. L., Pyrozhenko O. O. Requirements for the parameters of synthetic aperture radars onboard small satellites for Earth remote sensing. Технічна механика. 2024. №4. С. 55−65. https://doi.org/10.15407/itm2024.02.055 6. Храмов Д. О., Волошенюк О. Л. Аналіз стану і тенденції розвитку орбітальних угруповань малих космічних апаратів для вирішення завдань землеробства. Технічна механіка. 2023. № 4. C. 31–39. https://doi.org/10.15407/itm2023.04.031 7. Botelho R. C., Xavier A.L. A Unified Satellite Taxonomy Proposal Based on Mass and Size. Advances in Aerospace Science and Technology. 2019. V. 4, N 4. P. 57–73. https://doi.org/10.4236/aast.2019.44005 8. Kramer H. J., Cracknell A. P. An overview of small satellites in remote sensing. International Journal of Remote Sensing. 2008. V. 29, N 15. P. 4285–4337. https://doi.org/10.1080/01431160801914952 9. Khramov D. Constellations of small commercial earth remote sensing satellites (2011 – 2025) [Data set]. Zenodo. DOI: 10.5281/zenodo.13956290 10. ICEYE Dwell modes. URL: https://www.iceye.com/sar-data/imaging-modes/dwell (дата звернення: 09.01.2025). 11. Laurila P. CEYE SAR Videos Published: Technical Insights and Highlights. URL: https://www.iceye.com/blog/iceye-sar-videos-published-technical-insights-and-highlights (дата звернення: 09.01.2025). 12. ICEYE SAR Video. URL: https://sar.iceye.com/5.2.4/productFormats/vid/ (дата звернення: 09.01.2025). 13. Bacon A., Olivier B. Skimsats: bringing down the cost of Earth Observation. URL: https://link.springer.com/chapter/10.1007/978-3-319-34024-1_1 (дата звернення: 09.01.2025). 14. Werner D. How low can satellites go? VLEO entrepreneurs plan to find out. SpaceNews. URL: https://spacenews.com/how-low-can-satellites-go-vleo-entrepreneurs-plan-to-find-out/ (дата звернення: 09.01.2025). 15. DARPA Launch Challenge. URL: https://www.darpa.mil/launchchallenge (дата звернення: 09.01.2025). 16. JAXA terminates the operation of TSUBAME, a Super Low Altitude Test Satellite (SLATS). URL: https://global.jaxa.jp/press/2019/10/20191002a.html (дата звернення: 09.01.2025). 17. Thales Alenia Space and QinetiQ to pave the way for small multimission satellites in Very Low Earth Orbit. URL: https://www.thalesgroup.com/en/worldwide/space/press-release/thales-alenia-space-and-qinetiq-pave-way-small-multimission (дата звернення: 09.01.2025). 18. Foust J. Redwire announces second VLEO satellite platform. SpaceNews. URL: https://spacenews.com/redwire-announces-second-vleo-satellite-platform/ (дата звернення: 09.01.2025). 19. Haishao-1. URL: https://mp.weixin.qq.com/s/6AnwloNaqiuavx6D6fJMRg (дата звернення: 09.01.2025). 20. Maxar. Non-Earth Imaging. URL: https://www.maxar.com/maxar-intelligence/products/non-earth-imaging (дата звернення: 09.01.2025). 21. Flewelling B. Op-Ed: NATO Must Prioritize Tracking, Info Sharing in Orbit. Payload. URL: https://payloadspace.com/op-ed-nato-must-prioritize-tracking-info-sharing-in-orbit/ (дата звернення: 09.01.2025). 22. ESA - Φsat-2. URL: https://www.esa.int/Applications/Observing_the_Earth/Phsat-2 (дата звернення: 09.01.2025). 23. Chen J. et al. A remote sensing data transmission strategy based on the combination of satellite-ground link and GEO relay under dynamic topology. Future Generation Computer Systems. 2023. N. 145. P. 337–353. https://doi.org/10.1016/j.future.2023.02.016 24. Zhang P. et al. Near Real-Time Remote Sensing Based on Satellite Internet: Architectures, Key Techniques, and Experimental Progress. Aerospace. 204. V. 11, N 2. P. 167. https://doi.org/10.1016/j.future.2023.02.016 25. SDA. Optical Communications Terminal (OCT). Standard Version 3.0. URL: https://www.sda.mil/wp-content/uploads/2022/04/SDA-OCT-Standard-v3.0.pdf (дата звернення: 09.01.2025). 26. Chinese company completes ultra-high-speed remote sensing image laser transmission test. Xinhua. URL: https://english.news.cn/20241229/bf791f77f5ba4d44b6bff61f9af0087f/c.html (дата звернення: 09.01.2025). 27. Video shows Chinese Satellite has tracked a seeming F22 fighter jet flying through sky. Infoworld. URL: https://www.youtube.com/watch?v=VxKSJck7gls (дата звернення: 09.01.2025). 28. Sky Constellation Technology Validation Star Planned for Launch This Year: 300 Satellites to be Grouped in the Network. URL: https://tech.ifeng.com/c/8Z6DNqUpQcP (дата звернення: 09.01.2025). 29. Rodriguez-Alvarez N., Munoz-Martin J. F., Morris M. Latest Advances in the Global Navigation Satellite System–Reflectometry (GNSS-R) Field. Remote Sens. 2023. N 15. P. 2157. https://doi.org/10.3390/rs15082157 30. Garrison J. L. et al. SNOOPI: Demonstrating Earth remote sensing using P-band signals of opportunity (SoOp) on a CubeSat. Advances in Space Research, 2024. V. 73, N 6. P. 2855–2879. https://doi.org/10.1016/j.asr.2023.10.050 31. Ho S.C. et al. Wideband Ocean Altimetry Using Ku-Band and K-Band Satellite Signals of Opportunity: Proof of Concept. IEEE Geoscience and Remote Sensing Letters. 2019. V. 16, N 7. P. 1012–1016. https://doi.org/10.1109/LGRS.2019.2891976 32. Dmytryszyn M., Crook M., Sands T. Lasers for Satellite Uplinks and Downlinks. Science. 2021. V. 3, N 1. P. 4. https://doi.org/10.3390/sci3010004 33. Werner D. GeoOptics, PlanetIQ and Spire to supply NOAA with space weather data. SpaceNews. URL: https://spacenews.com/noaa-cwdp-space-weather/ (дата звернення: 09.01.2025). 34. WMO. Data from commercial meteorological small satellites were allowed to enter China's meteorological operational system for the first time. URL: https://wmo.int/media/news-from-members/data-from-commercial-meteorological-small-satellites-were-allowed-enter-chinas-meteorological (дата звернення: 09.01.2025). 35. Erwin S. Tomorrow.io gets DoD contract to launch two microwave weather sensor satellites. SpaceNews. URL:https://spacenews.com/tomorrow-io-gets-dod-contract-to-launch-two-microwave-weather-sensor-satellites/ (дата звернення: 09.01.2025). 36. Muon Space Establishes Communications, Confirms Health of Weather Satellite. URL: https://www.muonspace.com/press/muon-space-establishes-communications-confirms-health-of-weather-satellite (дата звернення: 09.01.2025). текст 3 2025-04-07 Article Article application/pdf https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/93 Technical Mechanics; No. 1 (2025): Technical Mechanics; 36-51 Институт технической механики Национальной академии наук Украины и Государственного космического агентства Украины; № 1 (2025): Technical Mechanics; 36-51 ТЕХНІЧНА МЕХАНІКА; № 1 (2025): ТЕХНІЧНА МЕХАНІКА; 36-51 uk https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/93/34 |