АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ
DOI: https://doi.org/10.15407/itm2025.01.112 Antenna arrays are systems that consist of a large number of antenna elements to shape, steer, and direct the beam without any physical motion of the antenna. Their basic concept is to use a group of separate antennas, each element of which can change the...
Gespeichert in:
| Datum: | 2025 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
текст 3
2025
|
| Schlagworte: | |
| Online Zugang: | https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/99 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Technical Mechanics |
Institution
Technical Mechanics| id |
oai:ojs2.journal-itm.dp.ua:article-99 |
|---|---|
| record_format |
ojs |
| institution |
Technical Mechanics |
| baseUrl_str |
|
| datestamp_date |
2025-11-04T12:05:52Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
антенна решітка діаграма спрямованості фаза сигналу методи керування променем. |
| spellingShingle |
антенна решітка діаграма спрямованості фаза сигналу методи керування променем. HRYMALIUK, I. V. АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| topic_facet |
антенна решітка діаграма спрямованості фаза сигналу методи керування променем. antenna array directional diagram phase of signal beam steering methods. |
| format |
Article |
| author |
HRYMALIUK, I. V. |
| author_facet |
HRYMALIUK, I. V. |
| author_sort |
HRYMALIUK, I. V. |
| title |
АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| title_short |
АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| title_full |
АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| title_fullStr |
АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| title_full_unstemmed |
АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ |
| title_sort |
антенні системи на основі антенних решіток, сучасні тенденції використання та напрямки розвитку |
| title_alt |
ANTENNA SYSTEMS BASED ON ANTENNA ARRAYS: THE CURRENT TRENDS OF USE AND LINES OF DEVELOPMENT |
| description |
DOI: https://doi.org/10.15407/itm2025.01.112
Antenna arrays are systems that consist of a large number of antenna elements to shape, steer, and direct the beam without any physical motion of the antenna. Their basic concept is to use a group of separate antennas, each element of which can change the phase or amplitude of the radiated signal. This makes it possible to direct radiation and control the angle of the main lobe of the antenna system's radiation pattern. The use of antenna arrays is widespread in many areas, such as military radars, satellite communications, security systems, the Internet of Things (IoT), and mobile communications.
The goal of this work is to analyze the possibilities of using antenna systems based on antenna arrays and estimate the current trends and lines of their development.
The article considers various types and methods of antenna array control, compares their efficiency and suitability for use in various areas, including unmanned aerial vehicle (UAV) systems. Attention is paid to the types of antenna arrays, such as linear and planar phased arrays, and to scanning methods - from digital methods to analog approaches. The article also compares phase and amplitude control methods, which include mechanical, digital, and adaptive control of antenna arrays. These methods offer high-accuracy scanning without any physical motion of the antenna. The effect of these methods on the power consumption, signal speed, and control accuracy is taken into account. The novelty and contribution of this article lie in an in-depth comparison of different types of antenna arrays and methods to control them with emphasis on their application in a dynamic environment typical of UAVs. New solutions are proposed for optimizing antenna array designs, which may be used in future unmanned aerial vehicle systems to improve the communication quality, increase the positioning accuracy, and reduce the response time in rapidly changing circumstances.
REFERENCES
1. Sarath J. V., Bindu (Palakkal) P., Biju K. S., Rani L. Review of antennas used in FPV/WLAN applications. Acta Technica Corviniensis - Bulletin of Engineering. 2021. T. XIV. F. 1. Pp. 29 - 40.
2. Meng S., Su X., Wen Z. , Dai X. , Zhou Y. , Yang W. Robust drones formation control in 5G-wireless sensor network using mm-wave. Hindawi Wireless Communications and Mobile Computing. May 2018. 7 pp. https://doi.org/10.1155/2018/5253840
3. Oliveira M. T., Miranda R. K., Costa J. P. C. L., Almeida A. L. F., Sousa R. T. Jr. Low-cost antenna array based drone tracking device for outdoor environments. Hindawi wireless communications and mobile computing. 2019.14 pp. https://doi.org/10.1155/2019/5437908
4. Moschetti P. Increasing drone video down link reliability using phased array technology. Colorado School of Mines. Thesis. Golden, Colorado. 2020. 86 pp.
5. Kumar A. Drone-based antenna array for service time minimization in wireless networks. JETIR. 2019. V. 6. Iss. 4. Pp. 629 - 637.
6. Xiao Z., Han Z., Arumugam N., Dobre O. A., Clerckx B., Choi J., He C. and Tong W. Antenna array enabled space/air/ground communications and networking for 6G. IEEE Journal on Selected Areas in Communications. 2022. V. 40. Iss. 10. Pp. 2773 - 2804. https://doi.org/10.1109/JSAC.2022.3196320
7. Lebed Y., Lazuta R., Koval A. Analysis the effectiveness use adaptive antenna arrays in radio communication systems in conditions active electronic warfare. Collection of Scientific Papers of the Military Institute of Telecommunications and Informatization. 2020. No. 1. Pp. 46 - 57. (In Ukrainian).
8. Morcelles K., Malatest B. Сomparing SDRS for aerospace and defense electronics. Microwave Journal, e - book. April 2024. Pp. 4 - 9. URL: https://www.microwavejournal.com/articles/41210 - comparing - sdrs - for - aerospace - and - defense - electronics (Last accessed on February 17, 2025).
9. Tran H. H., Nguyen T., Ta H. N., Pham D. Ph.. Metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for sub - 6 GHz, 5G applications. IEEE Transactions and Journals. 2023. V. 11. Pp. 1 - 8. URL: https://ieeexplore.ieee.org/document/10172201 (Last accessed on January 12, 2025).https://doi.org/10.1109/ACCESS.2023.3292303
10. Ioannis P. Theoharis advanced antenna system for 5G-enabled cubesats. University of Wollongong. Thesis. August 2023. 195 pp.
11. Ullah R., Ullah S., Kamal B., Faisal F., Ullah R., Choi D., Ahmad A. High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications. Electronics. 2021. 14 pp. URL: https://www.mdpi.com/2079-9292/10/6/667 (Last accessed on February 12, 2025).https://doi.org/10.3390/electronics10060667
12. Naqvi S. I., Hussain N. Antennas for 5G and 6G communications. Chapter in book: 5G and 6G Enhanced Broadband Communications. July 2022. 24p. URL: https://www.researchgate.net/publication/361960173_Antennas_for_5G_and_6G_Communications (Last accessed on December 23, 2024).
13. Wang Z., Dong Y. Compact MIMO-antenna using stepped impedance resonator-based metasurface for 5G and Wi - Fi applications. Microw. Opt. Technol. Lett. 2021. V. 63. No. 1. Pp. 211 - 216. https://doi.org/10.1002/mop.32560
14. Khan M. S. , Shafique M. F., Capobianco A.-D., Autizi E., Shoaib I. Compact UWB - MIMO antenna array with a novel decoupling structure. 10-th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan. 15 - 19 January 2013. Pp. 347 - 350.https://doi.org/10.1109/IBCAST.2013.6512176
15. Desai A., Bui C. D., Patel J., Upadhyaya T., Byun G., Nguyen T. K. Compact wideband four-element optically transparent MIMO antenna for mm - wave 5G applications. IEEE Access. 2020. V. 8. Pp. 194206 - 194217.https://doi.org/10.1109/ACCESS.2020.3033314
16. Kishore N., Senapati A. 5G smart antenna for IoT application: A review. International Journal of Communication Systems.V. 35. Iss. 13. 16 pp.https://doi.org/10.1002/dac.5241
17. Raad H. An UWB antenna array for flexible IoT wireless systems. Progress in Electromagnetics Research. 2018. V. 162. Pp. 109 - 121. https://doi.org/10.2528/PIER18060804
18. Tubbal F., Matekovits L., Raad R. Antenna designs for 5G/IoT and space applications. Electronics. 2022. V.11. 2484.https://doi.org/10.3390/electronics11162484
19. Arnaoutoglou D. G., Empliouk T. M., Kaifas T. N. F., Chryssomallis M. T., Kyriacou G. A review of multifunctional antenna designs for internet of things. Electronics. 2024. V. 13. 3200. https://doi.org/10.3390/electronics13163200
20. Maral G., Bousquet M., Sun Z. Satellite Communications Systems. 6-th edition. 2020. Pp. 325 - 569.https://doi.org/10.1002/9781119673811
21. Natera M. A. S. New antenna array architectures for satellite communications. Chapter in book: Advances in Satellite Communications. 2011. Pp. 168 - 194.
22. Rogstad D. H., Mileant A., Pham T. T. Antenna arraying techniques in the deep space network. Monograph 5: Deep Space Communications and Navigation Series. January 2003. 163 pp. https://doi.org/10.1002/047172131X
23. Josefsson L., Rengarajan S. R. Slotted waveguide array antennas. Theory, analysis and design. The Institution of Engineering and Technology. 2018. 351pp.https://doi.org/10.1049/SBEW517E
24. Voskresensky D. I., Gostyukhin V. L., Maksimov V. M., Ponomarev L. I. Microwave Devices and Antennas. Moscow: Radio i Svyaz', 1994. 376 pp. (In Russian).
25. Monzingo R. A., Miller T. W. Introduction to Adaptive Arrays. Raleigh: SciTech Publishing, Inc., 2004. 552 pp.
26. Manu O., Dimian M., Graur A. Analysis of beamforming in phased antenna arrays. 10-th International Conference on Development and Application Systems. Suceava, Romania. May 27 - 29, 2010. Pp. 294 - 298.
27. Hopkins G. D., Ratner J., Traille A., Tripp V. Aperture efficiency of amplitude weighting distributions for array antennas. Conference paper in IEEE Aerospace Conference Proceedings. April 2007. 9 pp. URL: https://www.researchgate.net/publication/224698919_Aperture_Efficiency_of_Amplitude_Weighting_Distributions_for_Array_Antennas (Last accessed on March 2, 2025).https://doi.org/10.1109/AERO.2007.352856
28. Gostyukhin V. L., Trusov V. N., Gostyukhin A. V. Active Phased Arrays. Moscow: Radiotekhnika, 2011. 304 pp. (in Russian).
29. Sun X., Blázquez - García R., García - Tejero A., Fernández - González J. M., Burgos - García M., Sierra - Castañer M. Circular array antenna for UAV-UAV сommunications. 11-th European Conference on Antennas and Propagation (EUCAP). March 2017. 4 pp.https://doi.org/10.23919/EuCAP.2017.7928819
30. Wnuk M. Application of the Vivaldi antenna in a linear antenna array for radar systems. Scientific Journal of Gdynia Maritime University. 2024. No. 132. Pp. 35 - 56.https://doi.org/10.26408/132.03
31. Hanna S., Yan H., Cabric D. Distributed UAV placement optimization for cooperative line - of - sight MIMO communications. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 12 - 17 May 2019. 5 pp. https://doi.org/10.1109/ICASSP.2019.8683875
32. Duan Z., Yang X., Xu Q., Wang L. Time - division multi array beamforming for UAV communication.Wireless Communications and Mobile Computing. April 2022. 13 pp. https://doi.org/10.1155/2022/4089931
33. Fomin P., Dumin O., Plakhtii V., Nesterenko M. Ultrawideband antenna arrays on Сlavin radiators. Visnyk of V.N. Karazin Kharkiv National University. Radiophysics and Electronics. 2023. Iss. 38. Pp. 65 - 73. (In Ukrainian).
|
| publisher |
текст 3 |
| publishDate |
2025 |
| url |
https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/99 |
| work_keys_str_mv |
AT hrymaliukiv antennasystemsbasedonantennaarraysthecurrenttrendsofuseandlinesofdevelopment AT hrymaliukiv antennísisteminaosnovíantennihrešítoksučasnítendencíívikoristannâtanaprâmkirozvitku |
| first_indexed |
2025-09-24T17:27:28Z |
| last_indexed |
2025-11-05T02:41:42Z |
| _version_ |
1850410629038342144 |
| spelling |
oai:ojs2.journal-itm.dp.ua:article-992025-11-04T12:05:52Z ANTENNA SYSTEMS BASED ON ANTENNA ARRAYS: THE CURRENT TRENDS OF USE AND LINES OF DEVELOPMENT АНТЕННІ СИСТЕМИ НА ОСНОВІ АНТЕННИХ РЕШІТОК, СУЧАСНІ ТЕНДЕНЦІЇ ВИКОРИСТАННЯ ТА НАПРЯМКИ РОЗВИТКУ HRYMALIUK, I. V. антенна решітка, діаграма спрямованості, фаза сигналу, методи керування променем. antenna array, directional diagram, phase of signal, beam steering methods. DOI: https://doi.org/10.15407/itm2025.01.112 Antenna arrays are systems that consist of a large number of antenna elements to shape, steer, and direct the beam without any physical motion of the antenna. Their basic concept is to use a group of separate antennas, each element of which can change the phase or amplitude of the radiated signal. This makes it possible to direct radiation and control the angle of the main lobe of the antenna system's radiation pattern. The use of antenna arrays is widespread in many areas, such as military radars, satellite communications, security systems, the Internet of Things (IoT), and mobile communications. The goal of this work is to analyze the possibilities of using antenna systems based on antenna arrays and estimate the current trends and lines of their development. The article considers various types and methods of antenna array control, compares their efficiency and suitability for use in various areas, including unmanned aerial vehicle (UAV) systems. Attention is paid to the types of antenna arrays, such as linear and planar phased arrays, and to scanning methods - from digital methods to analog approaches. The article also compares phase and amplitude control methods, which include mechanical, digital, and adaptive control of antenna arrays. These methods offer high-accuracy scanning without any physical motion of the antenna. The effect of these methods on the power consumption, signal speed, and control accuracy is taken into account. The novelty and contribution of this article lie in an in-depth comparison of different types of antenna arrays and methods to control them with emphasis on their application in a dynamic environment typical of UAVs. New solutions are proposed for optimizing antenna array designs, which may be used in future unmanned aerial vehicle systems to improve the communication quality, increase the positioning accuracy, and reduce the response time in rapidly changing circumstances. REFERENCES 1. Sarath J. V., Bindu (Palakkal) P., Biju K. S., Rani L. Review of antennas used in FPV/WLAN applications. Acta Technica Corviniensis - Bulletin of Engineering. 2021. T. XIV. F. 1. Pp. 29 - 40. 2. Meng S., Su X., Wen Z. , Dai X. , Zhou Y. , Yang W. Robust drones formation control in 5G-wireless sensor network using mm-wave. Hindawi Wireless Communications and Mobile Computing. May 2018. 7 pp. https://doi.org/10.1155/2018/5253840 3. Oliveira M. T., Miranda R. K., Costa J. P. C. L., Almeida A. L. F., Sousa R. T. Jr. Low-cost antenna array based drone tracking device for outdoor environments. Hindawi wireless communications and mobile computing. 2019.14 pp. https://doi.org/10.1155/2019/5437908 4. Moschetti P. Increasing drone video down link reliability using phased array technology. Colorado School of Mines. Thesis. Golden, Colorado. 2020. 86 pp. 5. Kumar A. Drone-based antenna array for service time minimization in wireless networks. JETIR. 2019. V. 6. Iss. 4. Pp. 629 - 637. 6. Xiao Z., Han Z., Arumugam N., Dobre O. A., Clerckx B., Choi J., He C. and Tong W. Antenna array enabled space/air/ground communications and networking for 6G. IEEE Journal on Selected Areas in Communications. 2022. V. 40. Iss. 10. Pp. 2773 - 2804. https://doi.org/10.1109/JSAC.2022.3196320 7. Lebed Y., Lazuta R., Koval A. Analysis the effectiveness use adaptive antenna arrays in radio communication systems in conditions active electronic warfare. Collection of Scientific Papers of the Military Institute of Telecommunications and Informatization. 2020. No. 1. Pp. 46 - 57. (In Ukrainian). 8. Morcelles K., Malatest B. Сomparing SDRS for aerospace and defense electronics. Microwave Journal, e - book. April 2024. Pp. 4 - 9. URL: https://www.microwavejournal.com/articles/41210 - comparing - sdrs - for - aerospace - and - defense - electronics (Last accessed on February 17, 2025). 9. Tran H. H., Nguyen T., Ta H. N., Pham D. Ph.. Metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for sub - 6 GHz, 5G applications. IEEE Transactions and Journals. 2023. V. 11. Pp. 1 - 8. URL: https://ieeexplore.ieee.org/document/10172201 (Last accessed on January 12, 2025).https://doi.org/10.1109/ACCESS.2023.3292303 10. Ioannis P. Theoharis advanced antenna system for 5G-enabled cubesats. University of Wollongong. Thesis. August 2023. 195 pp. 11. Ullah R., Ullah S., Kamal B., Faisal F., Ullah R., Choi D., Ahmad A. High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications. Electronics. 2021. 14 pp. URL: https://www.mdpi.com/2079-9292/10/6/667 (Last accessed on February 12, 2025).https://doi.org/10.3390/electronics10060667 12. Naqvi S. I., Hussain N. Antennas for 5G and 6G communications. Chapter in book: 5G and 6G Enhanced Broadband Communications. July 2022. 24p. URL: https://www.researchgate.net/publication/361960173_Antennas_for_5G_and_6G_Communications (Last accessed on December 23, 2024). 13. Wang Z., Dong Y. Compact MIMO-antenna using stepped impedance resonator-based metasurface for 5G and Wi - Fi applications. Microw. Opt. Technol. Lett. 2021. V. 63. No. 1. Pp. 211 - 216. https://doi.org/10.1002/mop.32560 14. Khan M. S. , Shafique M. F., Capobianco A.-D., Autizi E., Shoaib I. Compact UWB - MIMO antenna array with a novel decoupling structure. 10-th International Bhurban Conference on Applied Sciences and Technology. Islamabad, Pakistan. 15 - 19 January 2013. Pp. 347 - 350.https://doi.org/10.1109/IBCAST.2013.6512176 15. Desai A., Bui C. D., Patel J., Upadhyaya T., Byun G., Nguyen T. K. Compact wideband four-element optically transparent MIMO antenna for mm - wave 5G applications. IEEE Access. 2020. V. 8. Pp. 194206 - 194217.https://doi.org/10.1109/ACCESS.2020.3033314 16. Kishore N., Senapati A. 5G smart antenna for IoT application: A review. International Journal of Communication Systems.V. 35. Iss. 13. 16 pp.https://doi.org/10.1002/dac.5241 17. Raad H. An UWB antenna array for flexible IoT wireless systems. Progress in Electromagnetics Research. 2018. V. 162. Pp. 109 - 121. https://doi.org/10.2528/PIER18060804 18. Tubbal F., Matekovits L., Raad R. Antenna designs for 5G/IoT and space applications. Electronics. 2022. V.11. 2484.https://doi.org/10.3390/electronics11162484 19. Arnaoutoglou D. G., Empliouk T. M., Kaifas T. N. F., Chryssomallis M. T., Kyriacou G. A review of multifunctional antenna designs for internet of things. Electronics. 2024. V. 13. 3200. https://doi.org/10.3390/electronics13163200 20. Maral G., Bousquet M., Sun Z. Satellite Communications Systems. 6-th edition. 2020. Pp. 325 - 569.https://doi.org/10.1002/9781119673811 21. Natera M. A. S. New antenna array architectures for satellite communications. Chapter in book: Advances in Satellite Communications. 2011. Pp. 168 - 194. 22. Rogstad D. H., Mileant A., Pham T. T. Antenna arraying techniques in the deep space network. Monograph 5: Deep Space Communications and Navigation Series. January 2003. 163 pp. https://doi.org/10.1002/047172131X 23. Josefsson L., Rengarajan S. R. Slotted waveguide array antennas. Theory, analysis and design. The Institution of Engineering and Technology. 2018. 351pp.https://doi.org/10.1049/SBEW517E 24. Voskresensky D. I., Gostyukhin V. L., Maksimov V. M., Ponomarev L. I. Microwave Devices and Antennas. Moscow: Radio i Svyaz', 1994. 376 pp. (In Russian). 25. Monzingo R. A., Miller T. W. Introduction to Adaptive Arrays. Raleigh: SciTech Publishing, Inc., 2004. 552 pp. 26. Manu O., Dimian M., Graur A. Analysis of beamforming in phased antenna arrays. 10-th International Conference on Development and Application Systems. Suceava, Romania. May 27 - 29, 2010. Pp. 294 - 298. 27. Hopkins G. D., Ratner J., Traille A., Tripp V. Aperture efficiency of amplitude weighting distributions for array antennas. Conference paper in IEEE Aerospace Conference Proceedings. April 2007. 9 pp. URL: https://www.researchgate.net/publication/224698919_Aperture_Efficiency_of_Amplitude_Weighting_Distributions_for_Array_Antennas (Last accessed on March 2, 2025).https://doi.org/10.1109/AERO.2007.352856 28. Gostyukhin V. L., Trusov V. N., Gostyukhin A. V. Active Phased Arrays. Moscow: Radiotekhnika, 2011. 304 pp. (in Russian). 29. Sun X., Blázquez - García R., García - Tejero A., Fernández - González J. M., Burgos - García M., Sierra - Castañer M. Circular array antenna for UAV-UAV сommunications. 11-th European Conference on Antennas and Propagation (EUCAP). March 2017. 4 pp.https://doi.org/10.23919/EuCAP.2017.7928819 30. Wnuk M. Application of the Vivaldi antenna in a linear antenna array for radar systems. Scientific Journal of Gdynia Maritime University. 2024. No. 132. Pp. 35 - 56.https://doi.org/10.26408/132.03 31. Hanna S., Yan H., Cabric D. Distributed UAV placement optimization for cooperative line - of - sight MIMO communications. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 12 - 17 May 2019. 5 pp. https://doi.org/10.1109/ICASSP.2019.8683875 32. Duan Z., Yang X., Xu Q., Wang L. Time - division multi array beamforming for UAV communication.Wireless Communications and Mobile Computing. April 2022. 13 pp. https://doi.org/10.1155/2022/4089931 33. Fomin P., Dumin O., Plakhtii V., Nesterenko M. Ultrawideband antenna arrays on Сlavin radiators. Visnyk of V.N. Karazin Kharkiv National University. Radiophysics and Electronics. 2023. Iss. 38. Pp. 65 - 73. (In Ukrainian). DOI: https://doi.org/10.15407/itm2025.01.112 Антенні решітки – це системи, які складаються з великої кількості антенних елементів, що дозволяють формувати, керувати та скеровувати промінь без фізичного руху антени. Основна концепція антенних решіток полягає у використанні групи окремих антен, кожний елемент якої може змінювати фазу або амплітуду сигналу, що випромінюється. Завдяки цьому з'являється можливість направленого випромінювання та керування кутом основної пелюстки діаграми спрямованості антенної системи. Використання антенних решіток поширене у багатьох сферах, таких як військові радари, супутниковий зв'язок, системи безпеки, Інтернет речей та мобільні комунікації. Метою даної роботи є аналіз можливостей використання антенних систем на основі антенних решіток та оцінка сучасних тенденцій і напрямів їхнього розвитку. У статті розглядаються різні види та методи керування антенними решітками, порівнюються їхня ефективність та придатність для використання в різних сферах, зокрема й в системах безпілотних літальних апаратів. Приділяється увага типам антенних решіток, таким як лінійні та плоскі фазовані решітки, а також методам сканування — від цифрових методів до аналогових підходів. У статті також порівнюються методи керування фазою та амплітудою, які включають механічне, цифрове та адаптивне управління антенними решітками. Дані методи дають змогу забезпечити високоточне сканування без фізичного руху антени. Враховується, як ці методи впливають на енергоспоживання, швидкість переміщення сигналу та точність керування. Новизна статті полягає у глибокому порівнянні різних типів антенних решіток та методів керування ними з акцентом на їхнє застосування в умовах динамічного середовища, особливо характерного для безпілотних літальних апаратах. Пропонуються рішення для оптимізації конструкцій антенних решіток, які можуть бути використані у майбутніх системах безпілотних літальних апаратів для покращення якості зв'язку, підвищення точності позиціонування та скорочення часу реакції в умовах швидко змінюваних обставин. ПОСИЛАННЯ 1. Sarath J. V., Bindu (Palakkal) P., Biju K. S., Rani L. Review of antennas used in FPV/WLAN applications. Acta Technica Corviniensis – Bulletin of Engineering. 2021. T. XIV. F. 1. Pp. 29–40. 2. Meng S., Su X., Wen Z., Dai X., Zhou Y., Yang W. Robust drones formation control in 5G-wireless sensor network using mm-wave. Hindawi Wireless Communications and Mobile 2018. May. 7 pp. https://doi.org/10.1155/2018/5253840 3. Oliveira M. T., Miranda R. K., Costa J. P. C. L., Almeida A. L. F., Sousa R. T. Jr. Low-cost antenna array based drone tracking device for outdoor environments. Hindawi wireless communications and mobile computing. 2019. 14 pp. https://doi.org/10.1155/2019/5437908 4. Moschetti Increasing drone video down link reliability using phased array technology. Colorado school of mines. Thesis. Golden, Colorado. 2020. 86 p. 5. Kumar A. Drone-based antenna array for service time minimization in wireless networks. JETIR. 2019. April. 6. Is. 4. Р. 629–637. 6. Xiao Z., Han Z., Arumugam N., Dobre O. A., Clerckx B., Choi J., He C., Tong W. Antenna array enabled space/air/ground communications and networking for 6G. IEEE journal on selected areas in Communications. October 2022. Vol. 40. Is. 10. Р. 2773–2804. https://doi.org/10.1109/JSAC.2022.3196320 7. Лебідь Є. В., Лазута Р. Р., Коваль О. М. Оцінка ефективності застосування адаптивних антенних решіток у системах радіозв’язку в умовах активної радіоелектронної боротьби. Збірник наукових праць ВІТІ. 2020. № C. 46–57. 8. Morcelles K., Malatest Сomparing SDRS for aerospace and defense electronics. Microwave Journal, e – book. April 2024. P. 4–9. URL: https://www.microwavejournal.com/articles/41210 - comparing - sdrs - for - aerospace - and - defense - electronics (Last accessed: 17.02.2025). 9. Tran H. H., Nguyen T., Ta H. N., Pham D. Ph. Metasurface-based MIMO antenna with compact, wideband, and high isolation characteristics for sub - 6 GHz, 5G applications. IEEE transactions and journals. 2023. Vol. 11. 2023. P. 1–8. URL: https://ieeexplore.ieee.org/document/10172201 (Last accessed: 12.01.2025). https://doi.org/10.1109/ACCESS.2023.3292303 10. Ioannis P. Theoharis advanced antenna system for 5G-enabled cubesats. University of Wollongong. Thesis. 2023. August. 195 p. 11. Ullah R., Ullah S., Kamal B., Faisal F., Ullah R., Choi D., Ahmad A. High-gain vivaldi antenna with wide bandwidth characteristics for 5G mobile and Ku-band radar applications. Electronics. 14 p. URL: https://www.mdpi.com/2079-9292/10/6/667 (Last accessed: 12.02.2025). https://doi.org/10.3390/electronics10060667 12. Naqvi S. I., Hussain N. Antennas for 5G and 6G communications. Chapter in book: 5G and 6G Enhanced Broadband Communications. July 2022. 24p. URL: https://www.mdpi.com/2079-9292/10/6/667 (Last accessed on February 12, 2025). 13. Wang Z., Dong Y. Compact MIMO-antenna using stepped impedance resonator-based metasurface for 5G and Wi-Fi applications. Microw. Opt. Technol. Lett. Jan. 2021. Vol. 63. No.1. P. 211–216. https://doi.org/10.1002/mop.32560 14. Khan M. S. , Shafique M. F., Capobianco -D., Autizi E., Shoaib I. Compact UWB - MIMO antenna array with a novel decoupling structure. 10-th international Bhurban conference on applied sciences and technology. Islamabad, Pakistan. 15-th – 19-th January 2013. P. 347–350. https://doi.org/10.1109/IBCAST.2013.6512176 15. Desai A., Bui C. D., Patel J., Upadhyaya T., Byun G., Nguyen T. K. Compact wideband four-element optically transparent MIMO antenna for mm - wave 5G applications. IEEE Access. 2020. Vol. 8. P. 194206–194217. https://doi.org/10.1109/ACCESS.2020.3033314 16. Kishore N., Senapati A. 5G smart antenna for IoT application: A review. International journal of communication systems. 2018. Vol. 35, Issue 13. 16 p. https://doi.org/10.1002/dac.5241 17. Raad H. An UWB antenna array for flexible IoT wireless systems. Progress in electromagnetics research. 2018. 162. P. 109–121. https://doi.org/10.2528/PIER18060804 18. Tubbal F., Matekovits L., Raad Antenna designs for 5G/IoT and space applications. Electronics. 2022. Vol.11, 2484. 4p. https://doi.org/10.3390/electronics11162484 19. Arnaoutoglou G., Empliouk T. M., Kaifas T. N. F., Chryssomallis M. T., Kyriacou G. A review of multifunctional antenna designs for internet of things. Electronics. 2024. Vol. 13.3200. 33 p. https://doi.org/10.3390/electronics13163200 20. Maral G., Bousquet M., Sun Z. Satellite communications systems. 6-th edition. 2020. P. 325–569 https://doi.org/10.1002/9781119673811 21. Natera A. S. New antenna array architectures for satellite communications. Chapter in book: Advances in satellite communications. 2011. P. 168–194. 22. Rogstad D. H., Mileant A., Pham T. T. Antenna arraying techniques in the deep space network. Monograph 5: deep space communications and navigation series. 2003. January. 163 p. https://doi.org/10.1002/047172131X 23. Josefsson L., Rengarajan R. Slotted waveguide array antennas. Theory, analysis and design. The institution of engineering and technology. 2018. 351pp. https://doi.org/10.1049/SBEW517E 24. Воскресенский Д. И., Гостюхин В. Л., Максимов В. М. , Пономарев Л. И. Устройства СВЧ и антенны. Радио и связь. Москва. 1994. 376 с. 25. Monzingo R. A., Miller T. W. Introduction to adaptive arrays. SciTech Publishing, Inc. Raleigh, NC 27613. 2004. 552 p. 26. Manu O., Dimian M., Graur A. Analysis of beamforming in phased antenna arrays. 10-th International conference on development and application systems. Suceava, Romania. May 27–29, 2010. P. 294–298. 27. Hopkins G. D., Ratner J., Traille A., Tripp V. Aperture efficiency of amplitude weighting distributions for array antennas. Conference paper in IEEE aerospace conference proceedings. April 2007. 9 p. URL: https://www.researchgate.net/publication/224698919_Aperture_Efficiency_of_Amplitude_Weighting_Distributions_for_Array_Antennas (Last accessed: 02.03.2025). https://doi.org/10.1109/AERO.2007.352856 28. Гостюхин В. Л., Трусов В. Н., Гостюхин А. В. Активные фазированные решетки. 3-е издание. Издание «Радиотехника». Москва. 2011. 304 с. 29. Sun X., Blázquez – García R., García – Tejero A., Fernández – González J. M., Burgos – García M., Sierra – Castañer M. Circular array antenna for UAV-UAV сommunications. 11-th European Conference on Antennas and Propagation (EUCAP). March 2017. 4p. https://doi.org/10.23919/EuCAP.2017.7928819 30. Wnuk M. Application of the Vivaldi antenna in a linear antenna array for radar systems. Scientific journal of Gdynia maritime university. 2024. No. 132. 35–56. https://doi.org/10.26408/132.03 31. Hanna S., Yan H., Cabric D. Distributed UAV placement optimization for cooperative line - of - sight MIMO communications. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 12 – 17 May 2019. 5 pp. https://doi.org/10.1109/ICASSP.2019.8683875 32. Duan Z., Yang X., Xu Q., Wang L. Time-division multi array beamforming for UAV communication. Wireless communications and mobile computing. April 2022. 13 p. https://doi.org/10.1155/2022/4089931 33. Фомін П., Думін О., Плахтій В., Нестеренко М. Надширокосмугові антенні решітки на випромінювачах Клевіна. Вісник Харківського національного університету імені В. Н. Каразіна. Серія «Радіофізика та електроніка». 2023. Випуск 38. С. 65–73. текст 3 2025-04-07 Article Article application/pdf https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/99 Technical Mechanics; No. 1 (2025): Technical Mechanics; 112-124 Институт технической механики Национальной академии наук Украины и Государственного космического агентства Украины; № 1 (2025): Technical Mechanics; 112-124 ТЕХНІЧНА МЕХАНІКА; № 1 (2025): ТЕХНІЧНА МЕХАНІКА; 112-124 uk https://journal-itm.dp.ua/ojs/index.php/ITM_j1/article/view/99/29 |