Зовнішня термосилова дія як чинник управління формуванням структури литих заготівок: Processy litʹâ, 2019, Tom 136, №4, p.11-19
Received 07.05.2019 UDK 621.74:531.5 High temperature overheating of the molten metal is one of the main reasons for the formation of a coarse-grained crystalline structure of the casting. Therefore, to ensure the formation of a favorable structure and properties of the cast metal, this factor mu...
Збережено в:
| Дата: | 2019 |
|---|---|
| Автори: | , , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine
2019
|
| Теми: | |
| Онлайн доступ: | https://plit-periodical.org.ua/index.php/plit/article/view/125 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Casting Processes |
Репозитарії
Casting Processes| Резюме: | Received 07.05.2019
UDK 621.74:531.5
High temperature overheating of the molten metal is one of the main reasons for the formation of a coarse-grained crystalline structure of the casting. Therefore, to ensure the formation of a favorable structure and properties of the cast metal, this factor must be taken into account. In this work, the complex influence of various external factors (overheating temperature, cooling intensity and vibration) on the formation of the model alloy structure was studied using the method of physical modeling. It has been established that the negative effect of large overheating on the dispersity of the dendritic structure can be practically leveled out by adjusting the intensity of the heat sink, namely supercooling and the rate of crystallization. In addition, experimentally proved the high efficiency of vibration treatment of hardened alloys to form a favorable structure of cast billets. It was found that, regardless of the level of overheating of the melt and the intensity of the heat sink, vibration ensures the formation of a dispersed dendritic structure during solidification of metal alloys.
|
|---|