Розробка та виплавка ливарних високоентропійних сплавів на основі системи Fe–Co–Ni–Mn–Cr

Physico-Technological Institute of Metals and Alloys of the National Academy of Science of Ukraine (Kyiv, Ukraine) UDK 621.74:669.017.15 The literature review is carried out and the conditions for the formation of disordered substitutional solid solutions with body-centered cubic (BCC), face-centere...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Щерецький, О. А., Сергієнко, Р. А., Верховлюк, А. М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine 2023
Теми:
Онлайн доступ:https://plit-periodical.org.ua/index.php/plit/article/view/development-and-smelting-casting-high-entropy-alloys-based-fecon
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Casting Processes

Репозитарії

Casting Processes
Опис
Резюме:Physico-Technological Institute of Metals and Alloys of the National Academy of Science of Ukraine (Kyiv, Ukraine) UDK 621.74:669.017.15 The literature review is carried out and the conditions for the formation of disordered substitutional solid solutions with body-centered cubic (BCC), face-centered cubic (FCC), BCC+FCC lattices and eutectic structure in high-entropy alloys (HEAs) are determined. The following parameters are responsible for the formation of a solid solution in HEAs: mixing entropy 13.4 < ΔSmix ≤ 22 J/mol K; mixing enthalpy – 12 < ΔHmix <3.2 kJ/mol; atomic radii differences 0 ≤ δ < 6.6 %; electronegativity difference Δχ ≤ 0.12; valence electron concentration VEC > 8 (FCC), VEC < 6.87 (BCC), 6.87 < VEC < 8 (BCC + FCC); thermodynamic parameter Ω > 1.1. A special induction vacuum furnace for smelting high-entropy alloys has been designed and developed. The tungsten heater was replaced by an inductor using a high-frequency KLN generator manufactured by the German company Leybold Heraeus GMBH, with a power of 6 kW, a frequency of 20-22 kHz, the maximum temperature of the melt did not exceed 1800 0C. Melting of alloys was performed in high-purity argon with an excess pressure of 15-20 kPa in an alumina crucible, which was placed into a graphite hearth. The optimal modes of melting HEAs have been established, which ensure the production of homogeneous castings: heating to a temperature of 1600 0C at a rate of 20-50 0C/min, holding in a liquid state for 30 minutes and cooling with a furnace. The measurement of the chemical composition of the alloy over the cross section of the ingot was carried out using a microprobe analyzer MS-46 of the French company CAMECA. Among the elements, the smallest scatter of concentration across the section of the ingot sample showed cobalt, and the largest did manganese, with increasing number of remeltings, the scatter of elements content decreased. The concentration of the elements Fe, Co, Ni, Cr in the center of the ingot was greater than at the edge, and vice versa for Mn. After each remelting, the mass of the FeCoNiMnCr alloy sample decreased by no more than 1 wt %, and from the FeCoNiCr alloy, the total loss of the alloy components was no more than 0.1 wt %.   References  1 US 2002/0159917 A1, Int. Cl. C22C 30/00. High-entropy multielemental alloys / J.-W. Yeh // №. 09/706,710; appl. Apr. 29, 2002; pub. Oct. 31. 2002, Patent publication application [in English]. 2 Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current science, vol. 85, pp. 1404–1406 [in English]. 3 Ranganathan, S. (2003). Alloyed pleasures: multimetallic cocktails. Current science, vol. 85, pp. 1404–1406 [in English]. 4 Zhang, Y., Zhou, Y. J., Lin, J. P., Chen, G. L., Liaw, P. K. (2008). Solid-solution phase formation rules for multi-component alloys. Adv. Eng. Mater., vol. 10, no. 6, pp. 534–538 [in English]. 5 Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Prog. Mater. Sci., vol. 61, pp. 1–93 [in English]. 6 Yang, X., Zhang, Y. (2012). Prediction of high-entropy stabilized solid-solution in multicomponent alloys. Mater. Chem. Phys., vol. 132, pp. 233–238 [in English]. 7 Guo, S., Liu, C.T. (2011). Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int., no. 21, pp. 433–446 [in English]. 8 Lu, Y.P., Jiang, H., Guo, S., Wang, T.M., Cao, Z.Q., Li, T.J. (2017). A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, vol. 91, pp. 124–128 [in English]. 9 Jiang, H., Han, K., Gao, X., Lu, Y., Cao, Z., Gao, M.C., Hawk, J.A., Li, T. (2018). A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Des., vol. 142, pp. 101–105 [in English].10 in, X., Zhou, Y., Zhang, L., Du, X. Y., Li, B. S. (2018). A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Des., vol. 143, pp. 49–55 [in English].11 Ding, Z.Y., He, Q.F., Yang, Y. (2018). Exploring the design of eutectic or near-eutectic multicomponent alloys: From binary to high entropy alloys. Sci. China-Tech. Sci., vol. 61, issue 2, pp. 159–167 [in English].12 Lu, Y., Dong, Y., Jiang, H., Wang, Z., Cao, Z., Guo, S., Wang, T., Li, T., Liaw, P. K. (2020). Promising properties and future trend of eutectic high entropy alloys. Scripta Materialia, vol. 187, pp. 202–209 [in English].13 Lu, Y. P., Dong, Y., Guo, S., Jiang, L., Kang, H. J., Wang, T. M., Wen, B., Wang, Z. J., Jie, J. C., Cao, Z. Q., Ruan, H. H., Li, T. J. (2014) A Promising New Class of High-Temperature Alloys: Eutectic High-Entropy Alloys. Sci. Rep., vol. 4, p. 6200 [in English].14 Dong, Y., Yao, Z. Q., Huang, X., Du, F. M., Li, C. Q., Chen, A. F., Wu, F., Cheng, Y. Q., Zhang, Z. R. (2020). Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic highentropy-alloy system. J. Alloys. Compd., vol. 823, no. 153886, 8 pages [in English].15 Wu, Q. F., Wang, Z. J., Zheng, T., Chen, D., Yang, Z. S., Li, J. J., Kai, J. J., Wang, J. C. (2019). A casting eutectic high entropy alloy with superior strength-ductility combination. Mater. Lett., vol. 253, pp. 268–271 [in English].16 Dong, Y., Lu, Y. P., Kong, J. R., Zhang, J. J., Li, T. J. (2013). Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys. J. Alloys. Compd., vol. 573, pp. 96–101 [in English].17 Guo, S., Ng, C., Liu, C. T. (2013). Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J. Alloys Compd., vol. 557, pp. 77–81 [in English]18 Yang, Z. S., Wang, Z. J., Wu, Q. F., Zheng, T., Zhao, P., Zhao, J. K., Chen, J. Y. (2019). Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition . Appl. Phys. A., vol. 125, issue 3, no. 208, 6 pages [in English].19 Shafiei, A., Rajabi, S. (2019). A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni. Appl. Phys. A., vol. 125, issue 11, no. 783, 11 pages [in English].20 He, F., Wang, Z. J., Cheng, P., Wang, Q., Li, J. J., Dang, Y. Y., Wang, J. C., Liu, C. T. (2016). Designing eutectic high entropy alloys of CoCrFeNiNbx. J. Alloys Compd., vol. 656, pp. 284–289 [in English].21 Zhang, L. J., Yu, P. F., Fan, J. T., Zhang, M. D., Zhang, C. Z., Cui, H. Z., Li, G. (2020). Investigating the micro and nanomechanical properties of CoCrFeNi-Cx high-entropy alloys containing eutectic carbides. Mater. Sci. Eng. A., vol. 796, no. 140065, 9 pages [in English].