Виправлення ливарних дефектів у лопатках із сплаву ЖС3ДК-ВІ, модифікованого ультрадисперсними частинками карбонітриду титану, методом гарячого ізостатичного пересування
*JSC «Motor Sich» (Zaporizhia, Ukraine)**Zaporizhzhya Polytechnic National University (Zaporizhzhia, Ukraine) УДК 621.74.045:669.24:21.981 Research has established that the application of the technological operation of hot isostatic pressing (HIP) to blades made by the equiaxial casting method from...
Збережено в:
| Дата: | 2023 |
|---|---|
| Автори: | , , , , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine
2023
|
| Теми: | |
| Онлайн доступ: | https://plit-periodical.org.ua/index.php/plit/article/view/correction-casting-defects-blades-zhs3dk-vi-alloy-modified-ultra |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Casting Processes |
Репозитарії
Casting Processes| Резюме: | *JSC «Motor Sich» (Zaporizhia, Ukraine)**Zaporizhzhya Polytechnic National University (Zaporizhzhia, Ukraine)
УДК 621.74.045:669.24:21.981
Research has established that the application of the technological operation of hot isostatic pressing (HIP) to blades made by the equiaxial casting method from heat-resistant nickel alloy ZhS3DK-VI modified with ultradisperse Ti (C, N) particles allows for minimizing the presence of defects of foundry origin and thus ensure the required level of complexity physicomechanical and operational properties of finished products. The investigated working blades of the fan turbine (both before and after GIP) meet the requirements of OST 1 90126-85 in terms of chemical composition, structure, and mechanical and heat-resistant properties. The values of the angle of bending on the studied blades are within 98...1070. There are no cracks.During the operation of hot isostatic pressing, "healing" of pores and cracks occurs. In the structure of the examined blades after the GIP, micropores, and rickholes are practically absent. The size of the macro grain in the feather of the studied blade is ~0.75...2.0 mm, which is ~2 times smaller than in the tail part. An accumulation of carbonitride particles up to 16 μm in size was found in the structure of the blades (both in the feather and in the shank). The distance between the axes of the second-order dendrites in the feather of the blades is approximately ~1.5 times smaller than in the tail part.
References
1. Sims, Ch. T. (1995). Superalloys II: Heat-resistant materials for aerospace and industrial power plants: In 2 books. / Ed. Ch.T. Sims, N.S. Stoloff, W.K. Hagel; Translated from English, ed. R. E. Shalina. M.: Metallurgy, 1995. Book. 1. 384 p.; Book. 2. 384 p. [in Russian].2. D. V. V. Satyanarayana, N. E. Prasad. (2017). Nickel-based superalloys. Aerospace Materials and Material. Volume 1: Aerospace Materials. Рp. 199–228.3. Erickson, G. L. (1996). The Development of the CMSX-11B and CMSX-11C Alloys for Industrial Gas Turbine Application. Superalloys. P. 45–52.4. Michels, H. T., Friend W. Z. (1980). Nickel-Base Superalloys. Corrosion of Nickel and Nickel- Base Alloys. New York. P. 435–449.5. Azhazha V. M., Sverdlov V. Ya., Kondratov A. A. (2007). Influence of crystallization conditions on the macroscopic crystallization front and structural perfection of single crystals of Nialloys. Vestnik of KhNU. No. 781. Issue. 3 (35). pp. 73–80. [in Russian].6. Tsivirko, É. I., Zhemanyuk, P. D., Klochikhin, V. V., Naumik, V. V., Lunev, V. V. (2001). Crystallization processes, structure and properties of castings from high-temperature nickel alloys. Metal Science and Heat Treatment. № 43 (9–10). P. 382–386.7. Galdin N. M., Chernega D. F., Ivanchuk D. F. et al. (1989). Non-ferrous casting: reference book / ed. ed. N. M. Galdina. M.: Mashinostroenie, 1989. 528 p. [in Russian].8. Azhazha V. M., Gorbenko Yu. V., Kovtun G. P. (2004). Growth of monocrystals of Ni-W alloy under conditions of high temperature gradient. Crystallography. Volume 49, No. 2, pp. 382–386. [in Russian].9. Kuznetsov, V. P., Lesnikov, V. P., Konakova, I. P., Popov, N. A., Kvasnitskaya, Y. G. Structural and Phase Transformations in Single-Crystal Rhenium- and Ruthenium-Alloyed Nickel Alloy Under Testing For Long-Term Strength. Metal Science and Heat Treatment, 2015, 57 (7–8), стр. 503–506.10. Padalko, A. G. The practice of hot isostatic pressing of inorganic materials: monograph [Text]. M.: ICK Akademkniga, 2007. S. 194–230. [in Russian].11. Klochihin V., Lysenko N. and Naumyk V. (2017). Structure and properties of heat-resistant nickel alloys castings after hot isostatic pressing / Materials Science and Technology Conference and Exhibition 2017, MS and T 2017. Volume 2 (2017). С. 1370–1374.12. Zhemanyuk P. D., Klochikhin V. V., Lysenko N. I., Naumik V. V. (2013). Complex effect of technological operations on the structure and properties of heat-resistant nickel alloy ZhS3DK-VI. East European Journal of Advanced Technologies. No. 3/12 (63). pp. 68–73. [in Russian].13. Saburov V. P. (1988). Strengthening modification of steel and alloys. Foundry. No. 9. S. 7–8. [in Russian].14. Boguslaev A. V., Klochikhin V. V., Lysenko N. A. et al. (2011). Use of nanotechnologies in foundry production. Vestnik of the DSMA. No. 4 (25). pp. 23–28. [in Russian]. |
|---|