Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків

УДК: 621.74.046 Abstract. The technological features of developed casting-induction method for obtaining threelayer «cast iron-steel-cast iron» castings were studied. The specified method consists in the use of induction heating of a steel billet with a high-frequency electromagnetic field in the ca...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Тимошенко, А. М., Лихошва, В. П., Шматко, О. В., Пелікан, О. А., Ліхацький, Р. Ф.
Формат: Стаття
Мова:Ukrainian
Опубліковано: National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine 2023
Теми:
Онлайн доступ:https://plit-periodical.org.ua/index.php/plit/article/view/technological-features-combined-foundry-induction-method-produci
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Casting Processes

Репозитарії

Casting Processes
Опис
Резюме:УДК: 621.74.046 Abstract. The technological features of developed casting-induction method for obtaining threelayer «cast iron-steel-cast iron» castings were studied. The specified method consists in the use of induction heating of a steel billet with a high-frequency electromagnetic field in the casting process for obtaining three-layer products. The paper represents mathematical modeling results of temperature fields distribution under the action of electromagnetic fields on a steel workpiece. The main regularities of steel billet temperature changes depending from the current level and heating time have been established. As a result of simulation modeling, the technological parameters of the steel workpiece heating and cooling process were determined, as well as the pouring of the melt during the production of three-layer castings. Obtained dependences between temperature of the poured melt and temperature of the workpiece are necessary to ensure a high-quality connection between the steel inner part and working layer made of cast iron. The results of the experimental testing confirmed the adequacy of the mathematical modeling of the thermal state of the workpiece, as well as the effectiveness of using the developed combined casting-induction method for obtaining three-layer castings.   References 1. Xu, J., Gao, X., Jiang, Z., Wei, D., & Jiao, S. (2016). Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. The International Journal of Advanced Manufacturing Technology, 86, 817–827. http://dx.doi.org/10.1007/s00170-015-8232-62. Kostenko, G. D., Brechko, E. L., Pelikan, O. A., Kostenko, D. G., Bolgar, S. A., & Klimenko, L. M. (2003). Thermophysical peculiarities of preparation process of bimetallic castings on the iron alloys base. Litejnoe Proizvodstvo, 9, 19–22.3. Zhou, L., Jingwei, Z., Fanghui, J., Qingfeng, Z., Xiaojun, L., Sihai, J., & Zhengyi, J. (2018). Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 148, 272–283. https://doi.org/10.1016/j.ijmecsci.2018.08.0324. Mola, R., & Bucki, T. (2018). The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting. Archives of Foundry Engineering, 18(1), 71–76. https://doi.org/10.24425/1188145. Yanyang, G., Xiaowei, W., Guoxiong, R., Zepeng, L., Ruidi, Y., Xiao, Y., & Peng, D. (2022). Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. Journal of Manufacturing Processes, 82, 689–699. https://doi. org/10.1016/j.jmapro.2022.08.0226. Powell, J., & Green, S. (2021). The challenges of bonding composite materials and some innovative solutions. Reinforced Plastics, 65, 36–39.7. Xingjian, G., Zhengyi, J., Dongbin, W., Sihai, J., Dengfu, C., Jianzhong, X., Xiaoming, Z., & Dianyao, G. (2014). Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusioncompression bonding. Materials & Design, 63, 650–657. https://doi.org/10.1016/j. matdes.2014.06.0678. Bykov, A. A. (2011). Bimetal production and applications. Steel in Translation, 41, 778–786. https://doi.org/10.3103/S096709121109004X9. Wang, H., & Wang, Y. (2019). High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144. https://doi.org/10.3390/met902014410. Findik, F. (2011). Recent developments in explosive welding. Materials & Design, 32(3), 1081–1093. https://doi.org/10.1016/j.matdes.2010.10.01711. Bina, M. H., Dehghani, F., & Salimi, M. (2013). Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Materials & Design, 45, 504–509. https://doi.org/10.1016/j.matdes.2012.09.03712. Kwiecien, I., Bobrowski, P., Janusz-Skuza, M., Wierzbicka-Miernik, A., Tarasek, A., Szulc, Z., & Wojewoda-Budka, J. (2020). Interface Characterization of Ni/Al Bimetallic Explosively Welded Plate Manufactured with Application of Exceptionally High Detonation Speed. Journal of Materials Engineering and Performance, 29, 6286–6294. https://doi.org/10.1007/ s11665-020-05117-w13. Bo, P., Jinchuan, J., Mingfei, W., Bowen, D., Xianlong, W., Shunyu, L., & Tingju, L. (2022). Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding. Materials Science and Engineering: A, 844, 143–155. https://doi.org/10.1016/j.msea.2022.14315514. Kumar, N., Yuan, W., & Mishra, R. S. (2015). Friction Stir Welding of Dissimilar Alloys. In Friction Stir Welding of Dissimilar Alloys and Materials. Elsevier, 43–69. http://dx.doi.org/10.1016/B978-0-12-802418-8.00003-515. Mironov, S., Sato, Y. S., & Kokawa, H. (2020). Grain Structure Evolution during Friction-Stir Welding. Physical Mesomechanics, 23, 21–31. http://doi.org/10.1134/S102995992001003816. Kolařík, L., Kolaříková, M., & Janovec, J. (2016). Electroslag cladding of stainless austenitic layer by strip electrode, METAL 2016–25th Anniversary International Conference on Metallurgy and Materials. Brno, Czech Republic.17. rgirov, C., & Kalchevska, K. (2021). Studies on bimetallic ingots for armour by the methods of non-destructive testing. Machines. Technologies. Materials, 15(3), 107–109.18. Kuskov, Y. M., Zhdanov, V. A., Proskudin, V. N., & Netyaga, A. V. (2021). Production of Bimetallic Reinforcing Elements Using Electroslag Cladding for Hardening of Products of the Mining and Smelting Industry. Steel in Translation, 51, 267–269. https://doi.org/10.3103/S096709122104007019. Lihoshva, V. P., Shmatko, A. V., Savin, V. V., Savina, L. A., & Tymoshenko, A. N. (2019). The dynamic of cooling of cast iron in the cristllizer in condition of the semi-continuous production process bimetallic band “steel-cast iron". IOP Conf. Ser.: Mater. Sci. Eng., 656, 012030. https://doi.org/10.1088/1757-899X/656/1/012030