Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків
УДК: 621.74.046 Abstract. The technological features of developed casting-induction method for obtaining threelayer «cast iron-steel-cast iron» castings were studied. The specified method consists in the use of induction heating of a steel billet with a high-frequency electromagnetic field in the ca...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine
2023
|
| Schlagworte: | |
| Online Zugang: | https://plit-periodical.org.ua/index.php/plit/article/view/technological-features-combined-foundry-induction-method-produci |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Casting Processes |
Institution
Casting Processes| id |
oai:ojs2.localhost:article-36 |
|---|---|
| record_format |
ojs |
| institution |
Casting Processes |
| baseUrl_str |
|
| datestamp_date |
2023-05-31T05:03:28Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
ливарно-індукційний метод індукційний нагрів імітаційне моделювання тришарова виливка електромагнітне поле розплав |
| spellingShingle |
ливарно-індукційний метод індукційний нагрів імітаційне моделювання тришарова виливка електромагнітне поле розплав Тимошенко, А. М. Лихошва, В. П. Шматко, О. В. Пелікан, О. А. Ліхацький, Р. Ф. Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| topic_facet |
ливарно-індукційний метод індукційний нагрів імітаційне моделювання тришарова виливка електромагнітне поле розплав induction casting method induction heating simulation modeling three-layer casting electromagnetic field melt |
| format |
Article |
| author |
Тимошенко, А. М. Лихошва, В. П. Шматко, О. В. Пелікан, О. А. Ліхацький, Р. Ф. |
| author_facet |
Тимошенко, А. М. Лихошва, В. П. Шматко, О. В. Пелікан, О. А. Ліхацький, Р. Ф. |
| author_sort |
Тимошенко, А. М. |
| title |
Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_short |
Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_full |
Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_fullStr |
Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_full_unstemmed |
Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_sort |
технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків |
| title_alt |
Technological features of the combined foundry-induction method of producing three-layer castings |
| description |
УДК: 621.74.046
Abstract. The technological features of developed casting-induction method for obtaining threelayer «cast iron-steel-cast iron» castings were studied. The specified method consists in the use of induction heating of a steel billet with a high-frequency electromagnetic field in the casting process for obtaining three-layer products. The paper represents mathematical modeling results of temperature fields distribution under the action of electromagnetic fields on a steel workpiece. The main regularities of steel billet temperature changes depending from the current level and heating time have been established. As a result of simulation modeling, the technological parameters of the steel workpiece heating and cooling process were determined, as well as the pouring of the melt during the production of three-layer castings. Obtained dependences between temperature of the poured melt and temperature of the workpiece are necessary to ensure a high-quality connection between the steel inner part and working layer made of cast iron. The results of the experimental testing confirmed the adequacy of the mathematical modeling of the thermal state of the workpiece, as well as the effectiveness of using the developed combined casting-induction method for obtaining three-layer castings.
References
1. Xu, J., Gao, X., Jiang, Z., Wei, D., & Jiao, S. (2016). Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. The International Journal of Advanced Manufacturing Technology, 86, 817–827. http://dx.doi.org/10.1007/s00170-015-8232-62. Kostenko, G. D., Brechko, E. L., Pelikan, O. A., Kostenko, D. G., Bolgar, S. A., & Klimenko, L. M. (2003). Thermophysical peculiarities of preparation process of bimetallic castings on the iron alloys base. Litejnoe Proizvodstvo, 9, 19–22.3. Zhou, L., Jingwei, Z., Fanghui, J., Qingfeng, Z., Xiaojun, L., Sihai, J., & Zhengyi, J. (2018). Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 148, 272–283. https://doi.org/10.1016/j.ijmecsci.2018.08.0324. Mola, R., & Bucki, T. (2018). The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting. Archives of Foundry Engineering, 18(1), 71–76. https://doi.org/10.24425/1188145. Yanyang, G., Xiaowei, W., Guoxiong, R., Zepeng, L., Ruidi, Y., Xiao, Y., & Peng, D. (2022). Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. Journal of Manufacturing Processes, 82, 689–699. https://doi. org/10.1016/j.jmapro.2022.08.0226. Powell, J., & Green, S. (2021). The challenges of bonding composite materials and some innovative solutions. Reinforced Plastics, 65, 36–39.7. Xingjian, G., Zhengyi, J., Dongbin, W., Sihai, J., Dengfu, C., Jianzhong, X., Xiaoming, Z., & Dianyao, G. (2014). Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusioncompression bonding. Materials & Design, 63, 650–657. https://doi.org/10.1016/j. matdes.2014.06.0678. Bykov, A. A. (2011). Bimetal production and applications. Steel in Translation, 41, 778–786. https://doi.org/10.3103/S096709121109004X9. Wang, H., & Wang, Y. (2019). High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144. https://doi.org/10.3390/met902014410. Findik, F. (2011). Recent developments in explosive welding. Materials & Design, 32(3), 1081–1093. https://doi.org/10.1016/j.matdes.2010.10.01711. Bina, M. H., Dehghani, F., & Salimi, M. (2013). Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Materials & Design, 45, 504–509. https://doi.org/10.1016/j.matdes.2012.09.03712. Kwiecien, I., Bobrowski, P., Janusz-Skuza, M., Wierzbicka-Miernik, A., Tarasek, A., Szulc, Z., & Wojewoda-Budka, J. (2020). Interface Characterization of Ni/Al Bimetallic Explosively Welded Plate Manufactured with Application of Exceptionally High Detonation Speed. Journal of Materials Engineering and Performance, 29, 6286–6294. https://doi.org/10.1007/ s11665-020-05117-w13. Bo, P., Jinchuan, J., Mingfei, W., Bowen, D., Xianlong, W., Shunyu, L., & Tingju, L. (2022). Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding. Materials Science and Engineering: A, 844, 143–155. https://doi.org/10.1016/j.msea.2022.14315514. Kumar, N., Yuan, W., & Mishra, R. S. (2015). Friction Stir Welding of Dissimilar Alloys. In Friction Stir Welding of Dissimilar Alloys and Materials. Elsevier, 43–69. http://dx.doi.org/10.1016/B978-0-12-802418-8.00003-515. Mironov, S., Sato, Y. S., & Kokawa, H. (2020). Grain Structure Evolution during Friction-Stir Welding. Physical Mesomechanics, 23, 21–31. http://doi.org/10.1134/S102995992001003816. Kolařík, L., Kolaříková, M., & Janovec, J. (2016). Electroslag cladding of stainless austenitic layer by strip electrode, METAL 2016–25th Anniversary International Conference on Metallurgy and Materials. Brno, Czech Republic.17. rgirov, C., & Kalchevska, K. (2021). Studies on bimetallic ingots for armour by the methods of non-destructive testing. Machines. Technologies. Materials, 15(3), 107–109.18. Kuskov, Y. M., Zhdanov, V. A., Proskudin, V. N., & Netyaga, A. V. (2021). Production of Bimetallic Reinforcing Elements Using Electroslag Cladding for Hardening of Products of the Mining and Smelting Industry. Steel in Translation, 51, 267–269. https://doi.org/10.3103/S096709122104007019. Lihoshva, V. P., Shmatko, A. V., Savin, V. V., Savina, L. A., & Tymoshenko, A. N. (2019). The dynamic of cooling of cast iron in the cristllizer in condition of the semi-continuous production process bimetallic band “steel-cast iron". IOP Conf. Ser.: Mater. Sci. Eng., 656, 012030. https://doi.org/10.1088/1757-899X/656/1/012030 |
| publisher |
National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine |
| publishDate |
2023 |
| url |
https://plit-periodical.org.ua/index.php/plit/article/view/technological-features-combined-foundry-induction-method-produci |
| work_keys_str_mv |
AT timošenkoam technologicalfeaturesofthecombinedfoundryinductionmethodofproducingthreelayercastings AT lihošvavp technologicalfeaturesofthecombinedfoundryinductionmethodofproducingthreelayercastings AT šmatkoov technologicalfeaturesofthecombinedfoundryinductionmethodofproducingthreelayercastings AT pelíkanoa technologicalfeaturesofthecombinedfoundryinductionmethodofproducingthreelayercastings AT líhacʹkijrf technologicalfeaturesofthecombinedfoundryinductionmethodofproducingthreelayercastings AT timošenkoam tehnologíčníosoblivostíkombínovanogolivarnoíndukcíjnogometoduoderžannâtrišarovihvilivkív AT lihošvavp tehnologíčníosoblivostíkombínovanogolivarnoíndukcíjnogometoduoderžannâtrišarovihvilivkív AT šmatkoov tehnologíčníosoblivostíkombínovanogolivarnoíndukcíjnogometoduoderžannâtrišarovihvilivkív AT pelíkanoa tehnologíčníosoblivostíkombínovanogolivarnoíndukcíjnogometoduoderžannâtrišarovihvilivkív AT líhacʹkijrf tehnologíčníosoblivostíkombínovanogolivarnoíndukcíjnogometoduoderžannâtrišarovihvilivkív |
| first_indexed |
2025-09-24T17:42:37Z |
| last_indexed |
2025-09-24T17:42:37Z |
| _version_ |
1850424280360157184 |
| spelling |
oai:ojs2.localhost:article-362023-05-31T05:03:28Z Technological features of the combined foundry-induction method of producing three-layer castings Технологічні особливості комбінованого ливарно-індукційного методу одержання тришарових виливків Тимошенко, А. М. Лихошва, В. П. Шматко, О. В. Пелікан, О. А. Ліхацький, Р. Ф. ливарно-індукційний метод індукційний нагрів імітаційне моделювання тришарова виливка електромагнітне поле розплав induction casting method induction heating simulation modeling three-layer casting electromagnetic field melt УДК: 621.74.046 Abstract. The technological features of developed casting-induction method for obtaining threelayer «cast iron-steel-cast iron» castings were studied. The specified method consists in the use of induction heating of a steel billet with a high-frequency electromagnetic field in the casting process for obtaining three-layer products. The paper represents mathematical modeling results of temperature fields distribution under the action of electromagnetic fields on a steel workpiece. The main regularities of steel billet temperature changes depending from the current level and heating time have been established. As a result of simulation modeling, the technological parameters of the steel workpiece heating and cooling process were determined, as well as the pouring of the melt during the production of three-layer castings. Obtained dependences between temperature of the poured melt and temperature of the workpiece are necessary to ensure a high-quality connection between the steel inner part and working layer made of cast iron. The results of the experimental testing confirmed the adequacy of the mathematical modeling of the thermal state of the workpiece, as well as the effectiveness of using the developed combined casting-induction method for obtaining three-layer castings. References 1. Xu, J., Gao, X., Jiang, Z., Wei, D., & Jiao, S. (2016). Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. The International Journal of Advanced Manufacturing Technology, 86, 817–827. http://dx.doi.org/10.1007/s00170-015-8232-62. Kostenko, G. D., Brechko, E. L., Pelikan, O. A., Kostenko, D. G., Bolgar, S. A., & Klimenko, L. M. (2003). Thermophysical peculiarities of preparation process of bimetallic castings on the iron alloys base. Litejnoe Proizvodstvo, 9, 19–22.3. Zhou, L., Jingwei, Z., Fanghui, J., Qingfeng, Z., Xiaojun, L., Sihai, J., & Zhengyi, J. (2018). Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 148, 272–283. https://doi.org/10.1016/j.ijmecsci.2018.08.0324. Mola, R., & Bucki, T. (2018). The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting. Archives of Foundry Engineering, 18(1), 71–76. https://doi.org/10.24425/1188145. Yanyang, G., Xiaowei, W., Guoxiong, R., Zepeng, L., Ruidi, Y., Xiao, Y., & Peng, D. (2022). Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. Journal of Manufacturing Processes, 82, 689–699. https://doi. org/10.1016/j.jmapro.2022.08.0226. Powell, J., & Green, S. (2021). The challenges of bonding composite materials and some innovative solutions. Reinforced Plastics, 65, 36–39.7. Xingjian, G., Zhengyi, J., Dongbin, W., Sihai, J., Dengfu, C., Jianzhong, X., Xiaoming, Z., & Dianyao, G. (2014). Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusioncompression bonding. Materials & Design, 63, 650–657. https://doi.org/10.1016/j. matdes.2014.06.0678. Bykov, A. A. (2011). Bimetal production and applications. Steel in Translation, 41, 778–786. https://doi.org/10.3103/S096709121109004X9. Wang, H., & Wang, Y. (2019). High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144. https://doi.org/10.3390/met902014410. Findik, F. (2011). Recent developments in explosive welding. Materials & Design, 32(3), 1081–1093. https://doi.org/10.1016/j.matdes.2010.10.01711. Bina, M. H., Dehghani, F., & Salimi, M. (2013). Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Materials & Design, 45, 504–509. https://doi.org/10.1016/j.matdes.2012.09.03712. Kwiecien, I., Bobrowski, P., Janusz-Skuza, M., Wierzbicka-Miernik, A., Tarasek, A., Szulc, Z., & Wojewoda-Budka, J. (2020). Interface Characterization of Ni/Al Bimetallic Explosively Welded Plate Manufactured with Application of Exceptionally High Detonation Speed. Journal of Materials Engineering and Performance, 29, 6286–6294. https://doi.org/10.1007/ s11665-020-05117-w13. Bo, P., Jinchuan, J., Mingfei, W., Bowen, D., Xianlong, W., Shunyu, L., & Tingju, L. (2022). Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding. Materials Science and Engineering: A, 844, 143–155. https://doi.org/10.1016/j.msea.2022.14315514. Kumar, N., Yuan, W., & Mishra, R. S. (2015). Friction Stir Welding of Dissimilar Alloys. In Friction Stir Welding of Dissimilar Alloys and Materials. Elsevier, 43–69. http://dx.doi.org/10.1016/B978-0-12-802418-8.00003-515. Mironov, S., Sato, Y. S., & Kokawa, H. (2020). Grain Structure Evolution during Friction-Stir Welding. Physical Mesomechanics, 23, 21–31. http://doi.org/10.1134/S102995992001003816. Kolařík, L., Kolaříková, M., & Janovec, J. (2016). Electroslag cladding of stainless austenitic layer by strip electrode, METAL 2016–25th Anniversary International Conference on Metallurgy and Materials. Brno, Czech Republic.17. rgirov, C., & Kalchevska, K. (2021). Studies on bimetallic ingots for armour by the methods of non-destructive testing. Machines. Technologies. Materials, 15(3), 107–109.18. Kuskov, Y. M., Zhdanov, V. A., Proskudin, V. N., & Netyaga, A. V. (2021). Production of Bimetallic Reinforcing Elements Using Electroslag Cladding for Hardening of Products of the Mining and Smelting Industry. Steel in Translation, 51, 267–269. https://doi.org/10.3103/S096709122104007019. Lihoshva, V. P., Shmatko, A. V., Savin, V. V., Savina, L. A., & Tymoshenko, A. N. (2019). The dynamic of cooling of cast iron in the cristllizer in condition of the semi-continuous production process bimetallic band “steel-cast iron". IOP Conf. Ser.: Mater. Sci. Eng., 656, 012030. https://doi.org/10.1088/1757-899X/656/1/012030 УДК: 621.74.046 Досліджено технологічні особливості розробленого ливарно-індукційного методу одержання тришарових виливків чавун-сталь-чавун. Зазначений метод полягає у використанні індукційного нагріву сталевої заготовки високочастотним електромагнітним полем у ливарному процесі одержання тришарових виробів. В роботі представлені результати математичного моделювання розподілу полів температури при дії електромагнітних полів на сталеву заготовку. Встановлено основні закономірності зміни температури сталевої заготовки від сили струму і часу нагріву. В результатj імітаційного моделювання визначено технологічні параметри процесу нагріву та охолодження заготовки, а також заливки розплаву при одержанні тришарових виливків. Встановлені залежності температури розплаву, що заливається від температури заготовки, необхідні для забезпечення якісного зв’язку між заготовкою і робочим шаром. За результатами експериментальної апробації підтверджено адекватність математичного моделювання теплового стану заготовки, а також ефективність використання розробленого комбінованого ливарно-індукційного методу для одержання тришарових виливків. Список літератури 1. Xu, J., Gao, X., Jiang, Z., Wei, D., & Jiao, S. (2016). Microstructure and hot deformation behaviour of high-carbon steel/low-carbon steel bimetal prepared by centrifugal composite casting. The International Journal of Advanced Manufacturing Technology, 86, 817–827. http://dx.doi.org/10.1007/s00170-015-8232-62. Kostenko, G. D., Brechko, E. L., Pelikan, O. A., Kostenko, D. G., Bolgar, S. A., & Klimenko, L. M. (2003). Thermophysical peculiarities of preparation process of bimetallic castings on the iron alloys base. Litejnoe Proizvodstvo, 9, 19–22.3. Zhou, L., Jingwei, Z., Fanghui, J., Qingfeng, Z., Xiaojun, L., Sihai, J., & Zhengyi, J. (2018). Analysis of bending characteristics of bimetal steel composite. International Journal of Mechanical Sciences, 148, 272–283. https://doi.org/10.1016/j.ijmecsci.2018.08.0324. Mola, R., & Bucki, T. (2018). The Microstructure and Properties of the Bimetallic AZ91/AlSi17 Joint Produced by Compound Casting. Archives of Foundry Engineering, 18(1), 71–76. https://doi.org/10.24425/1188145. Yanyang, G., Xiaowei, W., Guoxiong, R., Zepeng, L., Ruidi, Y., Xiao, Y., & Peng, D. (2022). Microstructure and properties of copper-steel bimetallic sheets prepared by friction stir additive manufacturing. Journal of Manufacturing Processes, 82, 689–699. https://doi. org/10.1016/j.jmapro.2022.08.0226. Powell, J., & Green, S. (2021). The challenges of bonding composite materials and some innovative solutions. Reinforced Plastics, 65, 36–39.7. Xingjian, G., Zhengyi, J., Dongbin, W., Sihai, J., Dengfu, C., Jianzhong, X., Xiaoming, Z., & Dianyao, G. (2014). Effects of temperature and strain rate on microstructure and mechanical properties of high chromium cast iron/low carbon steel bimetal prepared by hot diffusioncompression bonding. Materials & Design, 63, 650–657. https://doi.org/10.1016/j. matdes.2014.06.0678. Bykov, A. A. (2011). Bimetal production and applications. Steel in Translation, 41, 778–786. https://doi.org/10.3103/S096709121109004X9. Wang, H., & Wang, Y. (2019). High-Velocity Impact Welding Process: A Review. Metals, 9(2), 144. https://doi.org/10.3390/met902014410. Findik, F. (2011). Recent developments in explosive welding. Materials & Design, 32(3), 1081–1093. https://doi.org/10.1016/j.matdes.2010.10.01711. Bina, M. H., Dehghani, F., & Salimi, M. (2013). Effect of heat treatment on bonding interface in explosive welded copper/stainless steel. Materials & Design, 45, 504–509. https://doi.org/10.1016/j.matdes.2012.09.03712. Kwiecien, I., Bobrowski, P., Janusz-Skuza, M., Wierzbicka-Miernik, A., Tarasek, A., Szulc, Z., & Wojewoda-Budka, J. (2020). Interface Characterization of Ni/Al Bimetallic Explosively Welded Plate Manufactured with Application of Exceptionally High Detonation Speed. Journal of Materials Engineering and Performance, 29, 6286–6294. https://doi.org/10.1007/ s11665-020-05117-w13. Bo, P., Jinchuan, J., Mingfei, W., Bowen, D., Xianlong, W., Shunyu, L., & Tingju, L. (2022). Microstructure characteristics and deformation behavior of tin bronze/1010 steel bimetal layered composite by continuous solid/liquid bonding. Materials Science and Engineering: A, 844, 143–155. https://doi.org/10.1016/j.msea.2022.14315514. Kumar, N., Yuan, W., & Mishra, R. S. (2015). Friction Stir Welding of Dissimilar Alloys. In Friction Stir Welding of Dissimilar Alloys and Materials. Elsevier, 43–69. http://dx.doi.org/10.1016/B978-0-12-802418-8.00003-515. Mironov, S., Sato, Y. S., & Kokawa, H. (2020). Grain Structure Evolution during Friction-Stir Welding. Physical Mesomechanics, 23, 21–31. http://doi.org/10.1134/S102995992001003816. Kolařík, L., Kolaříková, M., & Janovec, J. (2016). Electroslag cladding of stainless austenitic layer by strip electrode, METAL 2016–25th Anniversary International Conference on Metallurgy and Materials. Brno, Czech Republic.17. rgirov, C., & Kalchevska, K. (2021). Studies on bimetallic ingots for armour by the methods of non-destructive testing. Machines. Technologies. Materials, 15(3), 107–109.18. Kuskov, Y. M., Zhdanov, V. A., Proskudin, V. N., & Netyaga, A. V. (2021). Production of Bimetallic Reinforcing Elements Using Electroslag Cladding for Hardening of Products of the Mining and Smelting Industry. Steel in Translation, 51, 267–269. https://doi.org/10.3103/S096709122104007019. Lihoshva, V. P., Shmatko, A. V., Savin, V. V., Savina, L. A., & Tymoshenko, A. N. (2019). The dynamic of cooling of cast iron in the cristllizer in condition of the semi-continuous production process bimetallic band “steel-cast iron". IOP Conf. Ser.: Mater. Sci. Eng., 656, 012030. https://doi.org/10.1088/1757-899X/656/1/012030 National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine 2023-05-29 Article Article application/pdf https://plit-periodical.org.ua/index.php/plit/article/view/technological-features-combined-foundry-induction-method-produci 10.15407/plit2022.04.034 Casting processes; Casting processes №4 (150) 2022 Процеси лиття; Процеси лиття №4 (150) 2022 2707-1626 0235-5884 uk https://plit-periodical.org.ua/index.php/plit/article/view/technological-features-combined-foundry-induction-method-produci/38 Авторське право (c) 2023 А. М. Тимошенко, В. П. Лихошва, О. В. Шматко, О. А. Пелікан, Р. Ф. Ліхацький https://creativecommons.org/licenses/by-nc-nd/4.0/ |