Конструкційні алюмінієві сплави систем Al−Cu−Mg і Al−Zn−Mg−Cu в літакобудуванні. Огляд

УДК 669.2/.8:669.715:629.7:629.5 A review of scientific and technical information on structural deformable aluminum alloys, Al-Cu-Mg (series 2xxx) and Al-Zn-Mg-Cu (series 7xxx) systems was conducted. Their chemical and phase composition, alloying methods, mechanical and operational properties, influ...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2023
Автори: Пригунова, А. Г., Недужий, А. М.
Формат: Стаття
Мова:Ukrainian
Опубліковано: National Academy of Sciences of Ukraine, Physical-Technological Institute of Metals and Alloys of NAS of Ukraine 2023
Теми:
Онлайн доступ:https://plit-periodical.org.ua/index.php/plit/article/view/structural-aluminum-alloys-alcumg-and-alznmgsu-systems-aircraft-
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Casting Processes

Репозитарії

Casting Processes
Опис
Резюме:УДК 669.2/.8:669.715:629.7:629.5 A review of scientific and technical information on structural deformable aluminum alloys, Al-Cu-Mg (series 2xxx) and Al-Zn-Mg-Cu (series 7xxx) systems was conducted. Their chemical and phase composition, alloying methods, mechanical and operational properties, influence of technological factors were analyzed. Examples of the use of these alloys in aircraft construction are given. It is shown that among the alloys of the Al-Cu-Mg system (D1, B65, D16, D16ч, 1163, D19, etc.), the strongest is D16 and its improved modifications D16ч and 1163, the mechanical properties of which in the heat-hardened state are equal to low-carbon steels. Alloys D16, D16оч, 1163 have high strength characteristics at 20 0С and elevated temperatures, especially in the form of sheets and pressed parts. Therefore, it is a common material for the manufacture of aircraft skins in the engine area, which is subject to heating. However, an increase in strength leads to a decrease in plasticity. Alloys based on the Al-Zn-Cu-Mg system (В95, В95пч, В95оч, В96, В96Ц, В96Ц1, В96Ц3, В94, В93, В92, etc.) are the most high-strength among deformable aluminum alloys, so they are widely used in responsible power elements of aircraft and rocket engineering in the form of pressed and forged products. The strongest of them is B96Ц, especially its modification B96Ц1, in which, unlike the B95 alloy, manganese and chromium are partially or completely replaced by zirconium. The B95 alloy has high compressive strength and is used to cover the upper surface of aircraft wings, which is in a compressed state during flight. The inner surface of the wing is made of D16, D16ч, 1163 alloys that withstand tensile loads in flight. In terms of strength, the B95 alloy exceeds the similar characteristics of the D16 alloy by 20-25%, and in terms of yield strength by 40%. Replacing the D16 alloy with B95 makes it possible to reduce the weight of the aircraft to 5 tons. Almost all the large-sized stamped parts for the world’s largest turboprop An-22 “Antey” transport aircraft are made from the B93 forging alloy, which is alloyed with iron and heat-treated according to the T1 regime.The main disadvantage of high-strength alloys of the Al-Cu-Mg and Al-Zn-Mg-Cu systems is their tendency to degrade, which is caused by the action of various types of loads and corrosive environments during aircraft and flight basing and is accompanied by the development of fatigue or corrosion-fatigue cracks. Alternative points of view regarding the causes of these phenomena and ways of improving the properties of products made of these alloys by alloying, thermal and deformation treatments are considered.   References 1. Friedlyander I. N. High-strength deformable aluminum alloys. M.: HNTI Oborongiz, 1960. 291 p. [in Russian].2. Friedlyander I. N. Aluminum deformable structural alloys. M.: Metallurgy, 1979. 208 p. [in Russian].3. Beletsky V. M., Kryvov G. A. Aluminum alloys (Composition, properties, application): Reference ed. Ed. Academician I.N. Friedlander. – Kyiv: ZAO KOMINTECH, 2005. 365 p.4. Abolikhina O. V. Material aspects of the elimination and evolution of defects that determine the resource of exploitation of aluminum structures of aircraft / Dis ... cand. tech. Sciences: 05.16.01. Kiev: National Technical University "KPI" named after. I. Sikorsky, 2018. 215 p. [in Ukrainian].5. Danchenko V. N., Milenin A. A., Golovko A. N. Production of profiles from aluminum alloys. Theory and technology. Dnipropetrovsk: DNVP "System Technologies", 2001. 448 p. [in Russian].6. Verkhovlyuk A. M., Shcheretskyi O. A., Kanibolotskyi D. S., Dovbenko V. V. The influence of technological factors on the properties of a high-strength aluminum alloy of the Al-Zn-Mg-Cu system. Metallurgy and metal processing. 2020. No. 1. P. 27-36 [in Ukrainian].7. Welch P. I., Pikard A. C. The effect of texture on fatigue crack propagation in aluminium alloy 7075. Aluminium. 1985. V. 61. № 5. P. 332–335 [in English].8. Fridlyander I. N. High-strength alloys of the Al-Zn-Mg-Cu system. M.: Mashinostroenie, 2001. T. 2. Р. 94-128 [in Russian].9. Galatsky B. D., Tulyankin F. V., Fridyander I. N. Ways to improve the mechanical properties of pressed profiles and bars of alloy D16. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E.D. Zakharov. M. : Oborongiz. 1961. Р. 95 – 103 [in Russian].10. Kozlovskaya V. P., Vasilyeva N. I., Karpovich Yu. M. Conditions for obtaining pressed products from D16 aluminum alloy with high strength at room and elevated temperatures. Sat. articles "Deformable aluminum alloys". Ed. dr. technical of Sciences I.N. Friedlyandera, Dr. technical of Sciences V.I. Dobatkina and Ph.D. technical of Sciences E.D. Zakharova. M.: Oborongiz. 1961. P. 64-75 [in Russian].11. Matveev B. I., Kopytova M. V. Influence of manganese content, temperature and degree of deformation on the mechanical properties of large profiles from alloy B95. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E. D. Zakharov. M. : Oborongiz. 1961. Р. 76–84 [in Russian].12. Teitel I. L. Study of the process of crystallization and cooling of aluminum alloy ingots with a diameter of up to 800 mm using a continuous casting method. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E. D. Zakharov. M. : Oborongiz. 1961. Р. 200 – 209 [in Russian].13. Nikitaeva O. G., Kutaitseva E. I., Romanova O. A., Karpovich Yu. M., Kondratieva N. B. Influence of aluminum purity on mechanical properties and heat resistance of aluminum alloys. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V. I. Dobatkin and Cand. tech. Sciences E. D. Zakharov. M. : Oborongiz. 1961. Р. 30 – 43 [in Russian].14. Nogovitsyn O. V., Lakhnenko V. L., Baranov I. R. Influence of the cooling rate on the formation of the primary structure of deformable aluminum alloys. Metallurgy and metal processing. 2021. No. 1. P. 3-8 [in Ukrainian].15. Khalikova G. R., Trifonov V. G. The influence of the structure formed during crystallization under high pressure on the strength characteristics of wrought aluminum alloys D16 and V96Ts. Report Open school-conference of the CIS countries “Ultrafine-grained and nanostructured materials”, Ufa, August 4-9, 2008. Prospect. mater. 2009, Spec. issue, No. 7. Р. 332 – 336 [in Russian].16. Trifonov V. G., Khalikova G. R. Peculiarities of structure formation in D16 aluminum alloy under various liquid forging conditions. Materials Science. 2009. No. 7. Р. 37 – 43 [in Russian].17. Galatsky B. D. Causes of softening of thin-walled duralumin profiles depending on the hardening conditions. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E. D. Zakharov. M.: Oborongiz, 1961. Р. 85 – 94 [in Russian]18. Antipin V. P., Tyulpakova R. V. Redistribution of hydrogen in bars of aluminum alloys D16 and AK4-1 under the influence of internal stresses. Metals. 2011. No. 1. P. 70 [in Russian].19. Chernyshova T. A., Kobeleva L. I. Aging processes in dispersion-strengthened composite materials based on D16 aluminum alloy. Metals. 2010. No. 5. Р. 52–63 [in Russian].20. Abolikhina E. V., Molyar A. G. Corrosion of aircraft structures made of aluminum alloys. Physical and chemical mechanics of materials. 2003. No. 6. Р. 106-110 [in Russian].21. Ostash O. P., Andreiko I. M., Golovatyuk Yu .V., Semenets O. I. The injection of a corrosive medium on the automatic durability of degraded aluminum alloys of type D16 and V.95. Physical and chemical mechanics of materials. 2008. No. 5. Р. 75–84 [in Ukrainian].22. Abolikhina O. V., Chernega S. M. Degradation of V93T alloy during operation of aircraft An. Scientific notes. - 2011 - Vip. 31. - Р. 4-7 [in Ukrainian].23. Abolikhina E. V., Semenets A. I., Eretin A. P. Corrosion resistance of the upper wing panels of An-24, An-26 aircraft. Open information and computer technologies; Sat. scientific tr. nat. aerospace un-ta im. NOT. Zhukovsky "KhAI". 2009. Issue. 42. Р. 27-38 [in Russian].24. Abolikhina E. V., Semenets A. I., Eretin A. P. Corrosion resistance of the skins of the lower panels of the wing boxes of An-24, An-26 aircraft. Open information and computer technologies; collection of scientific tr. nat. aerospace un-ta im. N.E. Zhukovsky "KhAI". 2009. Issue. 41. P.76-91 [in Russian].25. Shi P., Mahadevan S. Corrosion fatigue and multiple site damage reliability analysis. Internation Journal of Fatigue. 2003. P. 457-469 [in English].26. Sinyavsky V. S. Corrosion properties of pressed semi-finished products from aluminum alloys D16ch and 1933 under static and cyclic loading. Technol. easy alloys. 2011. No. 4. P. 101–104 [in Russian].27. Ostash O. P., Andreiko G. M., Golovatyuk Yu. V., Kovalchuk L. B. Structural-phase mill and physical-mechanical power of degrading aluminum alloys of type D16 and V95. Physical and chemical mechanics of materials. 2008. 44. No. 6. P. 5–11 [in Ukrainian].28. Kutaitseva E. I., Filippova Z. G., Butusova I. V. Influence of some elements on the processes of recrystallization of alloys used for sheet cladding. Sat. articles "Wrought aluminum alloys".Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E.D. Zakharov. M.: Oborongiz, 1961. Р. 53–58 [in Russian].29. Novikov I. I., Semenov A. E. Hot brittleness of B95 type alloys. Sat. articles "Wrought aluminum alloys". Ed. doc. tech. Sciences I.N. Friedlander, Dr. tech. Sciences V.I. Dobatkin and Cand. tech. Sciences E.D. Zakharov. M. : Oborongiz. 1961. Р. 189–194 [in Russian].30. Aleksandrov V. D. Investigation of the surface of aluminum alloys hardened by alloying during laser heating. Technol. met. 2003. No. 7. P. 9–13 [in Russian].31. Kirpichev V. A., Ivanov D. V., Saushkin M. N. Residual stresses in specimens from V95 and D16T alloys after air shot blasting. Vestn. Samar. state tech. university Ser. Phys.-Math. science. 2009. No. 2. Р. 260–263 [in Russian].32. Gridin A. Yu., Shaper M., Danchenko V. I. Obtaining strips from high-strength aluminum alloys by roll casting-rolling. Processing of materials by pressure. 2011. No. 3 (28). Р. 184-194 [in Russian].33. Nogovitsyn A. V., Narivskii A. V., Baranov I. R., Shkolyarenko V. P., Shapoval V. I. Technology for producing sheet products from alloy D16 on a roll casting plant. Сasting processes. 2017. No. 3. Р. 37–42 [in Russian].34. Ferry M. Direct strip casting of metals and alloys / M. Ferry. – Boca Raton, FL, USA: CRC Press, 2006. 276 p. [in English].35. Gras Ch, Meredith M., Gatenby K., Hund J.D. Defect formation in twin roll-cast AA 3xxx and 5xxx series aluminium alloys. Materials Science Forum, 2002. Vol. 396-402. P. 89-94 [in English].36. Haga T., Ikawa M., Wtari H., Kumai S. Aluminium alloys strip casting usingan unequal diameter twin roll caster. Journal of Materials Processing Technology. 2006. Vol. 172. P. 271 – 276 [in English].37. Nogovitsin O.V., Nuradinov A.S., Prigunova A.G., Kutsova V.Z., Ayupova T.A., Nuradinov I.A. The structure and authority of the cast line in the technological language "roll casting - hot rolling - thermal processing". Metal science and processing of metals. 2020. No. 2. V. 26. Р. 49 – 59 [in Ukrainian].