Гідродинамічна модель затоплення проммайданчика АЕС Fukushima-daiichi
Based on analysis of statistics (including the Chile earthquake in 1960), the maximum height of a tsunami was evaluated at about 3 m in the design and construction of Fukushima-Daiichi. The design level of the NPP site was 10 m. Further Tepco–jsce deterministic evaluations confirmed that the Fukushi...
Збережено в:
Дата: | 2014 |
---|---|
Автори: | , , , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
State Scientific and Technical Center for Nuclear and Radiation Safety
2014
|
Онлайн доступ: | https://nuclear-journal.com/index.php/journal/article/view/426 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Nuclear and Radiation Safety |
Репозитарії
Nuclear and Radiation SafetyРезюме: | Based on analysis of statistics (including the Chile earthquake in 1960), the maximum height of a tsunami was evaluated at about 3 m in the design and construction of Fukushima-Daiichi. The design level of the NPP site was 10 m. Further Tepco–jsce deterministic evaluations confirmed that the Fukushima-Daiichi site could hardly be flooded in a tsunami. However, the beyond design basis earthquake on 11 March 2011 caused a tsunami that reached 15 m on the Fukushima-Daiichi coastline and led to flooding and severe accidents.
Based on conservative assumptions, this paper proposes a hydrodynamic model to describe the occurrence and spread of a tsunami. Numerical simulation has shown that a wave can reach 15 m on the Fukushima-Daiichi coastline with the reduced hydrodynamic resistance factor being 1.8. According to the developed model, the likelihood of flooding is determined not only by the site level, earthquake intensity and distance, but also by the duration of seismic impacts, conditions of energy dissipation, epicenter size and other factors. |
---|