Автоматизована система регулювання потужності енергоблока для управління ЯЕУ в маневрених режимах з постійною температурою входу в реактор
The paper is devoted to development of an improved automated power control system (APCS) for a VVER-1000 power unit operated in daily cycle load follow modes which allows us to maintain a daily power balance in the Ukrainian power system. The requirements for power unit load follow operation are hig...
Збережено в:
Дата: | 2013 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | Ukrainian |
Опубліковано: |
State Scientific and Technical Center for Nuclear and Radiation Safety
2013
|
Онлайн доступ: | https://nuclear-journal.com/index.php/journal/article/view/453 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Nuclear and Radiation Safety |
Репозитарії
Nuclear and Radiation SafetyРезюме: | The paper is devoted to development of an improved automated power control system (APCS) for a VVER-1000 power unit operated in daily cycle load follow modes which allows us to maintain a daily power balance in the Ukrainian power system.
The requirements for power unit load follow operation are high reliability and safety which depend on stability of the reactor in transition from a power level to another one. The axial offset is a quantitative measure of the reactor stability.
It has been shown that a change in the core inlet coolant temperature yields an uncontrollable disturbance affecting the axial offset and therefore the reactor stability.
An improved APCS has been developed. The main feature of the improved APCS is using three new control loops: the coolant inlet temperature is kept constant in the primary loop, while the axial offset is kept constant in the secondary one, the nuclear unit power is changed by varying boric acid concentration. Use of these three new control loops provides stability of the reactor in daily nuclear unit power follow modes. |
---|