ПЕРІОДИЧНІ ТА ХАОТИЧНІ РЕЖИМИ РОБОТИ ЛІНІЙНОГО МАГНІТОЕЛЕКТРИЧНОГО ДВИГУНА З ВІБРОУДАРНИМ ТИПОМ НАВАНТАЖЕННЯ

The paper presents the two-mass vibration system with tubular linear permanent magnet vibratory motor. The model of the system is grounded on an equivalent circuit with the lumped parameters and takes account the dependence of electric parameters from an operating frequency. The model also considers...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2019
Автори: Бондар, Р.П., Подольцев, О.Д.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут електродинаміки Національної академії наук України 2019
Теми:
Онлайн доступ:https://prc.ied.org.ua/index.php/proceedings/article/view/141
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine

Репозитарії

Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine
Опис
Резюме:The paper presents the two-mass vibration system with tubular linear permanent magnet vibratory motor. The model of the system is grounded on an equivalent circuit with the lumped parameters and takes account the dependence of electric parameters from an operating frequency. The model also considers magnetic losses in the motor core. We applied the Hertz’s formula for modeling of an impact force. Furthermore, we calculated characteristics of the two-mass electromechanical system in dependence of the impact parameters and operating frequency. Based on the derived system dynamical equations, and the corresponding Poincare map, the analysis of periodic and chaotic operating modes of the two-mass vibro-impact system is made. The received bifurcations diagram of motor current, at change of driving frequency, shows the existence of two vibro-impact modes for the given parameters of equivalent circuit. Constructional parameters of the motor have essential influence on dynamic behavior of the system. Changes of motor's anchor mass, and also a value of a preliminary gap between the hammer and damper can cause instability of the operating mode and non-periodic processes with complicated dynamics. We did the analysis of influence of the field excitation intensity on the motor’s operation mode. On the basis of nonlinear equations of system dynamics, and also by means of the Poincare map and bifurcation diagram, we have shown the influence of the permanent magnets field intensity on the machine operation stability. References 17, figures 9, table 1.