ПІДВИЩЕННЯ ТОЧНОСТІ КОРОТКОСТРОКОВОГО ПРОГНОЗУВАННЯ ЕЛЕКТРИЧНОГО НАВАНТАЖЕННЯ ЗА ДОПОМОГОЮ ШТУЧНОЇ НЕЙРОННОЇ МЕРЕЖІ З ВРАХУВАННЯМ ЗМІНИ СТРУКТУРИ СПОЖИВАННЯ ПРОТЯГОМ РОКУ

The paper presents an analysis of the influence of annual periodicity on the accuracy and stability of the electrical load short-term forecasting results. Two approaches are considered which take into account the different behavior of the electrical load in the heating season and off-season. For for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2017
Hauptverfasser: Черненко, П.О., Мірошник, В.О.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут електродинаміки Національної академії наук України 2017
Schlagworte:
Online Zugang:https://prc.ied.org.ua/index.php/proceedings/article/view/222
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine

Institution

Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:The paper presents an analysis of the influence of annual periodicity on the accuracy and stability of the electrical load short-term forecasting results. Two approaches are considered which take into account the different behavior of the electrical load in the heating season and off-season. For forecasting, we used the multilayer perceptron with scaled exponential linear unit (SELU) function used as a nonlinear transformation in hidden neurons. This function stabilizes mean and variance of layers and accelerates the learning process. In the first approach, the neural network included an additional input neuron that takes values ​​of 1 for days that are part of the heating season and 0 for the off-season days. In this case, the given model fitted on the annual data. In the second approach, two separate neural networks are developed for work in different seasons of the year. Input vector was generated separately for each network. Estimation of the accuracy and stability of the forecasting results was carried out on year data for real electricity supply company. References 8, figures 3, table.