МАТЕМАТИЧНА ТА КОМП’ЮТЕРНА МОДЕЛІ АСИНХРОННОГО ДВИГУНА З ФАЗНИМ РОТОРОМ У РЕЖИМІ ДИНАМІЧНОГО ГАЛЬМУВАННЯ З САМОЗБУДЖЕННЯМ

One of the important challenges of today is to ensure energy efficiency and improve the performance of the most common induction electric drives (IEDs) for production and lifting and handling machines. Increasing the overall control range and stable speed control in AEDs is often ensured by the use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2024
Hauptverfasser: Шамардіна, В.М., Земцова, К.О.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут електродинаміки Національної академії наук України 2024
Schlagworte:
Online Zugang:https://prc.ied.org.ua/index.php/proceedings/article/view/347
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine

Institution

Proceedings of the Institute of Electrodynamics of the National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:One of the important challenges of today is to ensure energy efficiency and improve the performance of the most common induction electric drives (IEDs) for production and lifting and handling machines. Increasing the overall control range and stable speed control in AEDs is often ensured by the use of pulse-key or phase-pulse control systems for the speed of rotation of the AD FR, in which the control is carried out in the rectified rotor current circuit. The presence in such schemes of a rotor winding voltage rectifier creates conditions for the use of the dynamic self-excitation braking (DSB) mode. The paper proposes a mathematical model of the AD FR in the DBS mode in the system of coordinate axes (d, q) fixed relative to the rotor, taking into account the saturation characteristics of the magnetic system of the machine. The model was tested by computer simulation using the capabilities of the Simulink Matlab package. The created model is of practical value; in the formation of energy-efficient braking modes of AEPs, it will allow analysing complex electromagnetic transients and reasonably choosing the structure and parameters of their electrical circuits. Ref. 4, fig. 6.