КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapp...
Gespeichert in:
| Datum: | 2013 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут електродинаміки НАН України, Київ
2013
|
| Schlagworte: | |
| Online Zugang: | https://techned.org.ua/index.php/techned/article/view/1191 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Technical Electrodynamics |
Institution
Technical Electrodynamics| id |
oai:ojs2.ted.new-point.com.ua:article-1191 |
|---|---|
| record_format |
ojs |
| spelling |
oai:ojs2.ted.new-point.com.ua:article-11912023-01-16T21:57:55Z CLASTER OF CHAOTIC OSCILATIONS КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ Жуйков , В.Я. Количенко , М.Е. chaotic processes power systems switch хаотические процессы электрические системы ключи A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapping functions through which the transition from one homogeneous chaotic process to another within a cluster is made. During the course of a single uniform chaotic process, an integral component of the cluster is formed, defined as the sum of the integer time intervals of continuity of developable function, which leads to the formation of fractal sequence of integers, which is characteristic for each homogeneous chaotic process. The inception of each homogeneous chaotic process is situated in the limited and specific time zone of the interval of continuity of developable function. The concrete parameters of the equations for which the observed clusters of chaotic oscillations are given. References 5, tebles 2, figures 9. Рассмотрено новое явление − кластер хаотических колебаний, состоящий из n однородных хаотических процессов, причем, присущее кластеру отображение содержит n2 функций отображения, из которых n − количество функций отображений для однородных хаотических процессов и n(n-1) − количество трансферных функций отображения. Показано, что во время протекания отдельного однородного хаотического процесса формируется целочисленная компонента кластера. Приведены конкретные параметры. Библ. 5, табл. 2, рис. 9. Інститут електродинаміки НАН України, Київ 2013-06-25 Article Article application/pdf https://techned.org.ua/index.php/techned/article/view/1191 Tekhnichna Elektrodynamika; No. 4 (2013): TEKHNICHNA ELEKTRODYNAMIKA; 029 ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА; № 4 (2013): ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА; 029 2218-1903 1607-7970 uk https://techned.org.ua/index.php/techned/article/view/1191/1078 Авторське право (c) 2023 ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА https://creativecommons.org/licenses/by-nc-nd/4.0 |
| institution |
Technical Electrodynamics |
| baseUrl_str |
|
| datestamp_date |
2023-01-16T21:57:55Z |
| collection |
OJS |
| language |
Ukrainian |
| topic |
хаотические процессы электрические системы ключи |
| spellingShingle |
хаотические процессы электрические системы ключи Жуйков , В.Я. Количенко , М.Е. КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| topic_facet |
chaotic processes power systems switch хаотические процессы электрические системы ключи |
| format |
Article |
| author |
Жуйков , В.Я. Количенко , М.Е. |
| author_facet |
Жуйков , В.Я. Количенко , М.Е. |
| author_sort |
Жуйков , В.Я. |
| title |
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| title_short |
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| title_full |
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| title_fullStr |
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| title_full_unstemmed |
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ |
| title_sort |
кластер хаотических колебаний |
| title_alt |
CLASTER OF CHAOTIC OSCILATIONS |
| description |
A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapping functions through which the transition from one homogeneous chaotic process to another within a cluster is made. During the course of a single uniform chaotic process, an integral component of the cluster is formed, defined as the sum of the integer time intervals of continuity of developable function, which leads to the formation of fractal sequence of integers, which is characteristic for each homogeneous chaotic process. The inception of each homogeneous chaotic process is situated in the limited and specific time zone of the interval of continuity of developable function. The concrete parameters of the equations for which the observed clusters of chaotic oscillations are given. References 5, tebles 2, figures 9. |
| publisher |
Інститут електродинаміки НАН України, Київ |
| publishDate |
2013 |
| url |
https://techned.org.ua/index.php/techned/article/view/1191 |
| work_keys_str_mv |
AT žujkovvâ clasterofchaoticoscilations AT količenkome clasterofchaoticoscilations AT žujkovvâ klasterhaotičeskihkolebanij AT količenkome klasterhaotičeskihkolebanij |
| first_indexed |
2025-09-24T17:39:34Z |
| last_indexed |
2025-09-24T17:39:34Z |
| _version_ |
1844167913526788096 |