КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ

A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapp...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2013
Автори: Жуйков , В.Я., Количенко , М.Е.
Формат: Стаття
Мова:Українська
Опубліковано: Інститут електродинаміки НАН України, Київ 2013
Теми:
Онлайн доступ:https://techned.org.ua/index.php/techned/article/view/1191
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Technical Electrodynamics

Репозитарії

Technical Electrodynamics
_version_ 1856544041072590848
author Жуйков , В.Я.
Количенко , М.Е.
author_facet Жуйков , В.Я.
Количенко , М.Е.
author_sort Жуйков , В.Я.
baseUrl_str
collection OJS
datestamp_date 2023-01-16T21:57:55Z
description A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapping functions through which the transition from one homogeneous chaotic process to another within a cluster is made. During the course of a single uniform chaotic process, an integral component of the cluster is formed, defined as the sum of the integer time intervals of continuity of developable function, which leads to the formation of fractal sequence of integers, which is characteristic for each homogeneous chaotic process. The inception of each homogeneous chaotic process is situated in the limited and specific time zone of the interval of continuity of developable function. The concrete parameters of the equations for which the observed clusters of chaotic oscillations are given. References 5, tebles 2, figures 9.
first_indexed 2025-09-24T17:39:34Z
format Article
id oai:ojs2.ted.new-point.com.ua:article-1191
institution Technical Electrodynamics
language Ukrainian
last_indexed 2025-09-24T17:39:34Z
publishDate 2013
publisher Інститут електродинаміки НАН України, Київ
record_format ojs
spelling oai:ojs2.ted.new-point.com.ua:article-11912023-01-16T21:57:55Z CLASTER OF CHAOTIC OSCILATIONS КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ Жуйков , В.Я. Количенко , М.Е. chaotic processes power systems switch хаотические процессы электрические системы ключи A new phenomenon was considered – a cluster of chaotic oscillations, consisting of n homogeneous chaotic processes, at that inherent cluster mapping contains n2 mapping functions, of which: n – the number of mapping functions for homogeneous chaotic processes and n(n-1) – the number of transfer mapping functions through which the transition from one homogeneous chaotic process to another within a cluster is made. During the course of a single uniform chaotic process, an integral component of the cluster is formed, defined as the sum of the integer time intervals of continuity of developable function, which leads to the formation of fractal sequence of integers, which is characteristic for each homogeneous chaotic process. The inception of each homogeneous chaotic process is situated in the limited and specific time zone of the interval of continuity of developable function. The concrete parameters of the equations for which the observed clusters of chaotic oscillations are given. References 5, tebles 2, figures 9. Рассмотрено новое явление − кластер хаотических колебаний, состоящий из n однородных хаотических процессов, причем, присущее кластеру отображение содержит n2 функций отображения, из которых n − количество функций отображений для однородных хаотических процессов и n(n-1) − количество трансферных функций отображения. Показано, что во время протекания отдельного однородного хаотического процесса формируется целочисленная компонента кластера. Приведены конкретные параметры. Библ. 5, табл. 2, рис. 9. Інститут електродинаміки НАН України, Київ 2013-06-25 Article Article application/pdf https://techned.org.ua/index.php/techned/article/view/1191 Tekhnichna Elektrodynamika; No. 4 (2013): TEKHNICHNA ELEKTRODYNAMIKA; 029 ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА; № 4 (2013): ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА; 029 2218-1903 1607-7970 uk https://techned.org.ua/index.php/techned/article/view/1191/1078 Авторське право (c) 2023 ТЕХНІЧНА ЕЛЕКТРОДИНАМІКА https://creativecommons.org/licenses/by-nc-nd/4.0
spellingShingle хаотические процессы
электрические системы
ключи
Жуйков , В.Я.
Количенко , М.Е.
КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title_alt CLASTER OF CHAOTIC OSCILATIONS
title_full КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title_fullStr КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title_full_unstemmed КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title_short КЛАСТЕР ХАОТИЧЕСКИХ КОЛЕБАНИЙ
title_sort кластер хаотических колебаний
topic хаотические процессы
электрические системы
ключи
topic_facet chaotic processes
power systems
switch
хаотические процессы
электрические системы
ключи
url https://techned.org.ua/index.php/techned/article/view/1191
work_keys_str_mv AT žujkovvâ clasterofchaoticoscilations
AT količenkome clasterofchaoticoscilations
AT žujkovvâ klasterhaotičeskihkolebanij
AT količenkome klasterhaotičeskihkolebanij