ДИСКРЕТНА НЕЛІНІЙНО-ІМОВІРНІСНА МОДЕЛЬ ЕКВІВАЛЕНТНОГО ЕЛЕКТРИЧНОГО ОПОРУ ШАРУ МЕТАЛЕВИХ ГРАНУЛ

Two strategies for constructing nonlinear-probabilistic models of the equivalent electrical resistance of a layer of metal granules at their spark-erosion and plasma-erosion treatment and algorithms for their implementation are presented. A method for taking into account the parametric properties of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2021
Hauptverfasser: Шидловська, Н.А., Захарченко, С.М.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Інститут електродинаміки НАН України, Київ 2021
Schlagworte:
Online Zugang:https://techned.org.ua/index.php/techned/article/view/286
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Technical Electrodynamics

Institution

Technical Electrodynamics
Beschreibung
Zusammenfassung:Two strategies for constructing nonlinear-probabilistic models of the equivalent electrical resistance of a layer of metal granules at their spark-erosion and plasma-erosion treatment and algorithms for their implementation are presented. A method for taking into account the parametric properties of such loads in their nonlinear and nonlinear-probabilistic models is described. Based on the data of direct experiments, the distributions of the electrical resistance of a layer of aluminum granules in tap water were obtained for eleven fixed values of the discharge current in it for both the leading and trailing edges of its pulses. The features of these distributions are described for different edges of the discharge current pulses. It has been proved that the obtained distributions can be adequately described by the normal law. The parameters of the normal law for each distribution obtained as a result of direct experiments are founded by the method of moments. A nonlinear-probabilistic model of the equivalent electrical resistance of a layer of aluminum granules in tap water is created, taking into account the main hysteresis of the dependence of resistance on current. It is shown that at large values of discharge currents, the nonlinear-probabilistic model of the equivalent electrical resistance of the layers of metal granules tends to degenerate into a nonlinear model. References 27, figures 4, a table.