AXIALLY-SYMMETRIC EXCITATION OF BICONE FORMED BY SEMI-INFINITE AND SEMI-INFINITE TRUNCATED CONES

The problem of axially-symmetric electromagnetic wave diffraction by a perfectly conducting bi-conical surface, which one arm is a semi-infinite cone and the other is a semi-infinite truncated cone, is solved rigorously using the mode-matching method and analytical regularization technique. The bi-c...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2015
Автори: Sharabura, O. M., Kuryliak, D. B.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2015
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1204
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:The problem of axially-symmetric electromagnetic wave diffraction by a perfectly conducting bi-conical surface, which one arm is a semi-infinite cone and the other is a semi-infinite truncated cone, is solved rigorously using the mode-matching method and analytical regularization technique. The bi-cone is excited by a ring magnetic source. This structure is analyzed under the condition of the cutting cone approaching the plane. The influence of the geometrical parameters and the exciting modes on the wideband properties of the bi-cone and on the electromagnetic energy penetration through its aperture is analyzed. Key wordes: infinite bicone, truncated apex, analytical regularization, round hole, conical conductorManuscript submitted 23.12.2014Radio phys. radio astron. 2015, 20(1): 76-85 REFERENCES1. ASH, E. A. and NICHOLLS, G., 1972. Super-resolution Aperture Scanning Microscope. Nature. vol. 237, no. 5357, pp. 510–512. DOI: https://doi.org/10.1038/237510a0 2. LEE, T., LEE, E., OH, S. and HAHN, J. W., 2013. Imaging heterogeneous nanostructures with a plasmonic resonant ridge aperture. Nanotechnology. – vol. 24, no. 14, id. 145502. DOI: https://doi.org/10.1088/0957-4484/24/14/145502 3. KUZNETSOVA, T. I., LEBEDEV, V. S. and TSVELI, A. M., 2004. Optical fields inside a conical waveguide with a subwavelength-sized exit hole. J. Opt. A: Pure Appl. Opt. vol. 6, no. 4, pp. 338–348. DOI: https://doi.org/10.1088/1464-4258/6/4/008 4. LINDQUIST, N. C., JOHNSON, T. W., NAGPAL, P., NORRIS D. J. and OH, S., 2013. Plasmonic nanofocusing with a metallic pyramid and an integrated C-shaped aperture. Scientific Reports. vol. 3, id. 1857. DOI: https://doi.org/10.1038/srep01857 5. LEE, Y., ALU, A. and ZHANG, J. X. J., 2011. Efficient apertureless scanning probes using patterned plasmonic surfaces. Opt. Express. vol. 19, no. 27, pp. 25990–25999. DOI: https://doi.org/10.1364/OE.19.025990 6. DREZET, A., WOEHL, J. C. and HUANT, S., 2002. Diffraction by a small aperture in conical geometry: Application to metal coated tips used in near-field scanning optical microscopy. Phys. Rev. E. vol. 65, is. 4, id. 046611. DOI: https://doi.org/10.1103/PhysRevE.65.046611 7. BILOTTI, F., TRICARICO, S., PIERINI, F. and VEGNI, L., 2011. Cloaking apertureless near-field scanning optical microscopy tips. Opt. Lett. vol. 36, no. 2, pp. 211–213. DOI: https://doi.org/10.1364/OL.36.000211 8. FURUKAWA, H. and KAWATA, S., 1998. Local field enhancement with an apertureless near-field-microscope probe. Opt. Commun. vol. 148, is. 4–6, pp. 221–224. DOI: https://doi.org/10.1016/S0030-4018(97)00687-1 9. MUSTONEN, A., BEAUD, P., KIRK, E., FEURER, T. and TSUJINO, S., 2012. Efficient light coupling for optically excited high-density metallic nanotip arrays. Scientific Reports. vol. 2, id. 915. DOI: https://doi.org/10.1038/srep00915 10. SHESTOPALOV, V. P., KIRILENKO, A. A. and MASALOV, S. A. 1984. Matrix Convolution-Type Equations in Diffraction Theory. Kyiv, Ukraine: Naukova Dumka Publ. (in Russian). 11. KURYLIAK, D. B. and SHARABURA, O. M., 2013. Electromagnetic Excitation of Bicone Formed by Semi-Infinite and Finite Trancated Conical Surfaces. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 138–146 (in Ukrainian). 12. KURYLIAK , D. B. and SHARABURA , O. M., 2013. Axially-Symmetric Radiation Field of Conical Monopole. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 323–330 (in Ukrainian). 13. KURYLIAK, D. B. and SHARABURA, O. M., 2014. Axially-Symmetric Electromagnetic Excitation of Metallic Disc-Conical Scatterer. Radiofizika i Electronica. vol. 5 (19), no. 2, pp. 3–9 (in Ukrainian). 14. KURYLIAK , D. B. and NAZARCHUK, Z. T., 2006. Analytical-numerical methods in the theory of wave diffraction on conical and wedge-shaped surfaces. Kyiv, Ukraine: Naukova Dumka Publ. (in Ukrainian). 15. NEFEDOV, E. I., 1982. Open coaxial resonance structures. Moscow, Russia: Nauka Publ. (in Rissian). 16. DROBAKHIN, O. O., PRIVALOV, E. H. and SALTYKOV, D. Yu., 2002. Calculation of resonant frequencies of coaxial beconical resonator with dielectric cylinder placed in split centre conductor. Visnyk Dnipropetrovs'kogo universitetu. Seriya Fizika, radioelektronika. is. 9. pp. 91–94 (in Russian).