THERMAL AND DYNAMIC PROCESSES IN IONOSPHERE DURING PARTIAL SOLAR ECLIPSE OF MARCH 20, 2015 OVER KHARKIV: CALCULATION RESULTS

PACS numbers: 94.20.Cf, 94.20.Wc, 95.10.GiThe results of calculations of dynamic and thermal processes in the geospace plasma during the partial solar eclipse of March 20, 2015 are presented. Also presented is a short review of studies devoted to the results of observations of the effects of several...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автор: Lyashenko, M. V.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2016
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1224
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:PACS numbers: 94.20.Cf, 94.20.Wc, 95.10.GiThe results of calculations of dynamic and thermal processes in the geospace plasma during the partial solar eclipse of March 20, 2015 are presented. Also presented is a short review of studies devoted to the results of observations of the effects of several solar eclipses over Kharkiv within 1999 to 2011 according to the incoherent scatter radar data. For calculation of the dynamic and thermal processes in the ionosphere some basic theoretical ratios are presented. The calculations have showed that at the time of maximum coverage of the solar disk the absolute value of the vertical component of the plasma transport velocity by ambipolar diffusion increased by approximately 1 to 5 m/s. The full plasma flux density increased by approximately 20, 26 and 73 % at 250, 300 and 350 km. At the altitude of 400 km the it increased by about 1.2 times. The particle flux density due to ambipolar diffusion has increased by about 19 and 57 % at altitudes of 250 and 300 km, respectively. At the altitudes of 350 and 400 km the it increased by about 2 and 1.4 times as compared with the reference day of March 20, 2013. Calculations have showed that a significant change in the thermal mode of the ionosphere during solar eclipse took place. Thus, at the time of eclipse maximum phase there was a reduction in the energy supplied to electrons by about 30 to 35 % in the altitude range of 200 to 300 km. Also, the eclipse effects have well manifested in the variation of the heat flux density transferred by electrons from the plasmasphere into the ionosphere. At the moment of maximum coverage of the solar disk, its absolute value has decreased by about 63, 50 and 42 % at 300, 350 and 400 km, respectively.Key words: solar eclipse, ionospheric plasma, dynamic and thermal processes, incoherent scatterManuscript submitted 30.09.2015Radio phys. radio astron. 2015, 20(4): 295-304REFERENCES1. AKIMOV, L. A., GRIGORENKO, E. I., TARAN, V. I., TYRNOV, O. F. and CHERNOGOR, L. F., 2002. The complex radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by a solar eclipse August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoy radioelektroniki. no. 2, pp. 25–63 (in Russian). 2. AKIMOV, L. A., BOGOVSKIY, V. K., GRIGORENKO, E. I., TARAN, V. I. and CHERNOGOR, L. F., 2005. Atmospheric-ionospheric effects of solar eclipse on May 31, 2003 in Kharkov. Geomagnetism i aeronomiya. vol. 45, no. 4, pp. 526–551 (in Russian). 3. BURMAKA, V. P., LYSENKO, V. N., LYASHENKO, M. V. and CHERNOGOR, L. F., 2007. Atmospheric-ionospheric effects of partial solar eclipse on October 3, 2005 inKharkov. 1. Observation results. Kosmichna nauka i tekhnologiya. vol. 13, no. 6, pp. 74–86 (in Russian). 4. LYASHENKO, M. V. and CHERNOGOR, L. F., 2008. Atmospheric-ionospheric effects of partial solar eclipse on October 3, 2005 inKharkov. 2. Modeling and discussion. Kosmichna nauka i tekhnologiya. vol. 14, no. 1, pp. 57–64 (in Russian). 5. GRIGORENKO, E. I., LYASHENKO, M. V. and CHERNOGOR, L. F., 2008. Effects of the Solar Eclipse of March 29, 2006, in the Ionosphere and Atmosphere. Geomagnetism and Aeronomy. vol. 48, no 3, pp. 337–351. DOI: https://doi.org/10.1134/S0016793208030092 6. CHERNOGOR, L. F., GRIGORENKO, Ye. I. and LYASHENKO, M. V., 2011. Effects in the geospace during partial solar eclipses over Kharkiv. Int. J. Remote Sens. vol. 32, no. 11, pp. 3219–3229. DOI: https://doi.org/10.1080/01431161.2010.541509 7. DOMNIN, I. F., YEMELYANOV, L. Ya., LYASHENKO, M. V., Kotov, D. V. and CHERNOGOR, L. F. Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations. Geomagnetism and Aeronomy. vol. 53, no. 1, pp. 113–123. DOI: https://doi.org/10.1134/S0016793213010076 8. LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solar eclipse of August 1, 2008, above Kharkov: 3. Calculation results and discussion. Geomagnetism and Aeronomy. vol. 53, no. 3, pp. 367–376. DOI: 10.1137/S0016793213020096 9. LYASHENKO, M. V., 2013. The effects of the partial solar eclipse on January 4, 2011 in the variety of thermal process parameters in ionosphere. Sun and Geosphere. vol. 8, no. 1, pp. 15–18. 10. DOMNIN, I. F., EMELYANOV, L. YA., LYASHENKO, M. V. and CHERNOGOR, L. F., 2014. Partial solar eclipse of January 4, 2011 above Kharkiv: observation and simulation results. Geomagnetism and Aeronomy. vol. 54, no. 5, pp. 583–592. DOI: https://doi.org/10.1134/S0016793214040112 11. AFRAIMOVICH, E. L., KOSOGOROV, E. A. and LESYUTA, O. S., 2002. Effects of the August 11, 1999 total solar eclipse as deduced from total electron content measurements at the GPS network. J. Atmos. Sol.-Terr. Phys. vol. 64, no. 18, pp. 1933–1941. DOI: https://doi.org/10.1016/S1364-6826(02)00221-3 12. STUBBE, P., 1970. The F-region during an eclipse – A theoretical study. J. Atmos. Terr. Phys. vol. 32, no. 6, pp. 1109–1116. DOI: https://doi.org/10.1029/1999JA900228 13. BOITMAN, O. N., KALIKHMAN, A. D. and TASHCHILIN, A. V., 1999. The midlatitude ionosphere during the total solar eclipse of March 9, 1997. J. Geophys. Res. vol. 104, no. A12, pp. 28 197–28 206. DOI: https://doi.org/10.1029/1999JA900228 14. LE, H., LIU, L., YUE, X. and WAN, W., 2008. The ionospheric responses to the 11 August 1999 solar eclipse: observations and modeling. Ann. Geophys. vol. 26, is. 1, pp. 107–116. DOI:  https://doi.org/10.5194/angeo-26-107-2008 15. LE, H., LIU, L., YUE, X. and WAN, W., 2009. The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse. Ann. Geophys. vol. 27, is.1, pp. 179–184. DOI: https://doi.org/10.5194/angeo-27-179-2009 16. SEKAR, R., GUPTA, S. P. and CHAKRABARTY, D., 2014. Characteristics of E-region background ionosphere and plasma waves measured over the dip equator during total solar eclipse campaign. J. Atmos. Sol.-Terr. Phys. vol. 114, pp. 58–65, DOI: https://doi.org/10.1016/j.jastp.2014.04.006 17. BABAKHANOV, I. Y., BELINSKAYA, A. Y., BIZIN, M. A., GREKHOV, O. M., KHOMUTOV, S. Y., KUZNETSOV, V. V. and PAVLOV, A. F., 2013. The geophysical disturbances during the total solar eclipse of 1 August 2008 in Novosibirsk, Russia. J. Atmos. Sol.-Terr. Phys. vol. 92, pp. 1–6. DOI: https://doi.org/10.1016/j.jastp.2012.09.016 18. NYMPHAS, E. F, OTUNLA, T. A., ADENIYI, M. O. and OLADIRAN, E. O., 2012. Impact of the total solar eclipse of 29 March 2006 on the surface energy fluxes at Ibadan, Nigeria. J. Atmos. Sol.-Terr. Phys. vol. 80, pp. 28–36. DOI: https://doi.org/10.1016/j.jastp.2012.02.024 19. JAKOWSKI, N., STANKOV, S. M., WILKEN, V., BORRIES, C., ALTADILL, D., CHUM, J., BURESOVA, D., BOSKA, J., SAULI, P., HRUSKA, F. and CANDER, LJ. R., 2008. Ionospheric behavior over Europe during the solar eclipse of 3 October 2005. J. Atmos. Sol.-Terr. Phys. vol. 70, no. 6, pp. 836–853. DOI: https://doi.org/10.1016/j.jastp.2007.02.016 20. TARAN, V. I., 2001. Ionospheric investigation of ionosphere in natural and artificial disturbed conditions by incoherent scattering method. Geomagnetism i aeronomiya. vol. 41, no 5, pp. 659–666 (in Russian). 21. LYSENKO V. N., 2001. Measurement of vertical component of the drift velocity of plasma and kinetic temperatures in the ionosphere. Geomagnetism i aeronomiya. vol. 41, no. 3, pp. 365–368 (in Russian). 22. SCHUNK, R. W, and NAGY, A. F., 2004. Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge, UK: Cambridge University Press. 23. BRYUNELLI, B. E. and NAMGALADZE, A. A., 1987. Physics of the ionosphere. Moscow: Nauka (in Russian). 24. PICONE, J. M., HEDIN, A. E., DROB, D. P. and AIKIN, A. C., 2002. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. vol. 107, no. A12, pp. SIA 15-1–SIA 15-16. DOI: https://doi.org/10.1029/2002JA009430 25. SERGEENKO, N. P., 1982. Estimates of electric fields during ionospheric disturbances. In: Ionospheric forecasting. Moscow: Nauka (in Russian). 26. FINLAY, C. C., MAUS, S., BEGGAN, C. D., BONDAR, T. N., CHAMBODUT, A., CHERNOVA, T. A., CHULLIAT, A., GOLOVKOV, V. P., HAMILTON, B., HAMOUDI, M., HOLME, R., HULOT, G., KUANG, W., LANGLAIS, B., LESUR, V., LOWES, F. J., LÜHR, H., MACMILLAN, S., MANDEA, M., MCLEAN, S., MANOJ, C., MENVIELLE, M., MICHAELIS, I., OLSEN, N., RAUBERG, J., ROTHER, M., SABAKA, T. J., TANGBORN, A., TØFFNER-CLAUSEN, L., THÉBAULT, E., THOMSON, A. W. P., WARDINSKI, I., WEI, Z. and ZVEREVA, T. I., 2010. International Geomagnetic Reference Field: the eleventh generation. Geophys. J. vol. 183, no. 3, pp. 1216–1230. DOI: https://doi.org/10.1111/j.1365-246X.2010.04804.x