SYNCHRONOUS OSCILLATIONS IN VAN DER POL GENERATOR WITH MODULATED NATURAL FREQUENCY
The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefre...
Збережено в:
Дата: | 2016 |
---|---|
Автори: | , |
Формат: | Стаття |
Мова: | rus |
Опубліковано: |
Видавничий дім «Академперіодика»
2016
|
Теми: | |
Онлайн доступ: | http://rpra-journal.org.ua/index.php/ra/article/view/1228 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Radio physics and radio astronomy |
Репозитарії
Radio physics and radio astronomyРезюме: | The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefrequency resonances resulted from the interaction between oscillations of the generator natural frequency, modulation frequency and synchronized signal frequency. Characteristics of synchronous oscillations due to the below mentioned three-frequency interaction are obtained and comparison with the case of synchronization of oscillator on the main mode made.Key words: synchronization, oscillator, auto-oscillations, generator, region of synchronizationManuscript submitted 21.07.2015Radio phys. radio astron. 2015, 20(4): 340-347 REFERENCES1. ADLER, R. A., 1946. Study of Locking Phenomena in Oscillators. Proc. IRE. vol. 34, is. 6, pp. 351–357. DOI: https://doi.org/10.1109/JRPROC.1946.229930 2. BLEKHMAN, I. I., 1981. Synchronization in Nature and Technology. Moscow: Nauka Publ. (in Russian). 3. LANDA, P. S., 1980. Self-Oscillations in Systems with the Finite Number of Degrees of Freedom. Moscow: Nauka Publ. (in Russian). 4. PIKOVSKY, A., ROSEMBLUM, M. and KURTHS, J., 2001. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press. 5. GONZÁLEZ-MIRANDA. J. M., 2004. Synchronization and Control of Chaos. An introduction for scientists and engineers. London: Imperial College Press. 6. LAI, Y. M. and PORTER, M. A., 2013. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Phys. Rev. E. vol. 88, is.1, id. 012905. DOI: https://doi.org/10.1103/PhysRevE.88.012905 7. LANDA, P. S. and TARANKOVA, N. D., 1976. Synchronization of generator with modulated frequency. Radiotekhnika i Elektronika. vol. 2, pp. 261–265 (in Russian). 8. BELOGORTSEV, A. B., VAVRIV, D. M. and TRETYAKOV, O. A., 1990. Chaos in quasilinear Van der Pol oscillator. Radiotekhnika i Elektronika. vol. 35, no. 6, pp. 1300–1307 (in Russian). 9. VAVRIV, D. M. and CHERNYSHOV, I. Y., 1990. Experimental investigation of stochastic instability of nonlinear oscillator. Radiotekhnika i Elektronika. vol. 35, no. 1, pp. 151–158 (in Russian). 10. BELOGORTSEV, A. B., VAVRIV, D. M. and TRETYAKOV, O. A., 1993. Destruction of quasiperiodic oscillations in weakly nonlinear systems. Appl. Mech. Rev., vol. 46, no 7, pp. 372–384. DOI: https://doi.org/10.1115/1.3120366 |
---|