SYNCHRONOUS OSCILLATIONS IN VAN DER POL GENERATOR WITH MODULATED NATURAL FREQUENCY

The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefre...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Nimets, A. Yu., Vavriv, D. M.
Формат: Стаття
Мова:rus
Опубліковано: Видавничий дім «Академперіодика» 2016
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1228
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:The synchronous operation of Van Der Pole generator with the low-frequency modulated natural frequency has been investigated. The presence of low-frequency modulation is shown to lead to formation of additional synchronization regions. The appearance of such regions is found to be caused by threefrequency resonances resulted from the interaction between oscillations of the generator natural frequency, modulation frequency and synchronized signal frequency. Characteristics of synchronous oscillations due to the below mentioned three-frequency interaction are obtained and comparison with the case of synchronization of oscillator on the main mode made.Key words: synchronization, oscillator, auto-oscillations, generator, region of synchronizationManuscript submitted 21.07.2015Radio phys. radio astron. 2015, 20(4): 340-347 REFERENCES1. ADLER, R. A., 1946. Study of Locking Phenomena in Oscillators. Proc. IRE. vol. 34, is. 6, pp. 351–357. DOI: https://doi.org/10.1109/JRPROC.1946.229930 2. BLEKHMAN, I. I., 1981. Synchronization in Nature and Technology. Moscow: Nauka Publ. (in Russian). 3. LANDA, P. S., 1980. Self-Oscillations in Systems with the Finite Number of Degrees of Freedom. Moscow: Nauka Publ. (in Russian). 4. PIKOVSKY, A., ROSEMBLUM, M. and KURTHS, J., 2001. Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge: Cambridge University Press. 5. GONZÁLEZ-MIRANDA. J. M., 2004. Synchronization and Control of Chaos. An introduction for scientists and engineers. London: Imperial College Press. 6. LAI, Y. M. and PORTER, M. A., 2013. Noise-induced synchronization, desynchronization, and clustering in globally coupled nonidentical oscillators. Phys. Rev. E. vol. 88, is.1, id. 012905. DOI: https://doi.org/10.1103/PhysRevE.88.012905 7. LANDA, P. S. and TARANKOVA, N. D., 1976. Synchronization of generator with modulated frequency. Radiotekhnika i Elektronika. vol. 2, pp. 261–265 (in Russian). 8. BELOGORTSEV, A. B., VAVRIV, D. M. and TRETYAKOV, O. A., 1990. Chaos in quasilinear Van der Pol oscillator. Radiotekhnika i Elektronika. vol. 35, no. 6, pp. 1300–1307 (in Russian). 9. VAVRIV, D. M. and CHERNYSHOV, I. Y., 1990. Experimental investigation of stochastic instability of nonlinear oscillator. Radiotekhnika i Elektronika. vol. 35, no. 1, pp. 151–158 (in Russian). 10. BELOGORTSEV, A. B., VAVRIV, D. M. and TRETYAKOV, O. A., 1993. Destruction of quasiperiodic oscillations in weakly nonlinear systems. Appl. Mech. Rev., vol. 46, no 7, pp. 372–384. DOI: https://doi.org/10.1115/1.3120366