MILLIMETER WAVE SPECTROSCOPY OF THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES OF ACETONE

PACS numbers: 33.15.-e, 33.20.-tPurpose: spectrum investigation of the lowest three torsional states of acetone (CH3COCH3 ) within the frequency ranges 34–150 and 480–620 GHz. Design/methodology/approach: New measurements were carried out using the automated millimeter wave spectrometer in the Insit...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2016
Автори: Armieieva, I. A., Ilyushin, V. V., Alekseev, E. A., Dorovskaya, O. A., Margulès, L., Motiyenko, R. A.
Формат: Стаття
Мова:English
Опубліковано: Видавничий дім «Академперіодика» 2016
Теми:
Онлайн доступ:http://rpra-journal.org.ua/index.php/ra/article/view/1232
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Radio physics and radio astronomy

Репозитарії

Radio physics and radio astronomy
Опис
Резюме:PACS numbers: 33.15.-e, 33.20.-tPurpose: spectrum investigation of the lowest three torsional states of acetone (CH3COCH3 ) within the frequency ranges 34–150 and 480–620 GHz. Design/methodology/approach: New measurements were carried out using the automated millimeter wave spectrometer in the Insitute of Radio Asronomy of NASU (Kharkiv, Ukraine) and the submillimeter-wave spectrometer of PhLAM (Lille, France). The results of new measurements were fitted using a recently developed model for the molecules with two equivalent methyl rotors and C2v symmetry at equilibrium PAM_C2v_2tops program).Findings: Analysis of the acetone molecule spectrum was carried out using the new measurements for torsion–rotation transitions in the millimeter wave range belonging to the ground, first and second excited torsional states, as well as previously published data. In addition, we performed more accurate measurements of a number of previously published lines which posed some problems for previous analysis using the same model.Conclusions: The remeasurements have shown that the problems existed with spectrum description were caused by underestimated experimental error of the previously published data. The final fit uses 99 parameters to give an overall weighted root-meansquare deviation of 0.78 for the dataset consisting of 6233, 4868, and 4364 transitions with J up to 60 and Ka up to 35, belonging, respectively, to the ground, first, and second excited torsional states of the acetone molecule.Key words: acetone, millimeter wave spectrum, methyl top internal rotationManuscript submitted 11.11.2015Radio phys. radio astron. 2016, 21(1): 37-47REFERENCES1. COMBES, F., GERIN, M., WOOTEN, A., WLODARCZAK, G., CLAUSSET, F. and ENCRENAZ, P. J., 1987. Acetone in interstellar space. Astron. Astrophys. vol. 180, no. 1-2, pp. 13–16. 2. SNYDER, L. E., LOVAS, F. J., MEHRINGER, D. M., MIAO, N. Y., KUAN, Y.-J., HOLLIS, J. M. and JEWELL, P. R., 2002. Confirmation of interstellar acetone. Astrophys. J. vol. 578, no. 1, pp. 245–255. DOI: https://doi.org/10.1086/342273 3. FRIEDEL, D. N., SNYDER, L. E., REMIJAN, A. J. and TURNER, B. E., 2005. Detection of interstellar acetone toward the Orion-KL hot core. Astrophys. J. vol. 632, no. 1. pp. L95–L98. DOI: https://doi.org/10.1086/497986 4. SWALEN, J. D. and COSTAIN, C. C., 1959. Internal rotation in molecules with two internal rotors: microwave spectrum of acetone. J. Chem. Phys. vol. 31, pp. 1562–1574. DOI: https://doi.org/10.1063/1.1730653 5. NELSON, R. and PIERCE, L., 1965. Microwave spectrum, structure, and barrier to internal rotation of acetone. J. Mol. Spectrosc. vol. 18, is. 3, pp. 344–352. DOI: https://doi.org/10.1016/0022-2852(65)90144-X 6. VACHERAND, J. M., VAN EIJCK, B. P., BURIE J. and DEMAISON, J., 1986. The rotational spectrum of acetone: internal rotation and centrifugal distortion analysis. J. Mol. Spectrosc. vol. 118, is. 2, pp. 355–362. DOI: https://doi.org/10.1016/0022-2852(86)90175-X 7. OLDAG, F. and SUTTER, D. H., 1992. The rotational zeeman effect in acetone, its g-tensor, its magnetic susceptibility anisotropies and its molecular electric quadrupole moment tensor; a high resolution microwave fourier transform study. Z. Naturforch. A. vol. 47, is. 3, pp. 527–532. DOI: https://doi.org/10.1515/zna-1992-0315 8. GRONER, P., ALBERT, S., HERBST, E., DE LUCIA, F. C., LOVAS, F. J., DROUIN, B. J. and PEARSON, J. C., 2002. Acetone: laboratory assignments and predictions through 620 GHz for the vibrational-torsional ground state. Astrophys. J. Suppl. Ser. vol. 142, no. 1, pp. 145–151. DOI: https://doi.org/10.1086/341221 9. GRONER, P., HERBST, E., DE LUCIA, F. C., DROUIN, J. and MÄDER, H., 2006. Rotational spectrum of acetone, СН3COСН3, in the first torsional excites state. J. Mol. Struct. vol. 795, is 1-3, pp. 173–178. DOI: https://doi.org/10.1016/j.molstruc.2006.02.028 10. GRONER, P., MEDVEDEV, I. R., DE LUCIA, F. C. and DROUIN, J., 2008. Rotational spectrum of acetone, СН3COСН3, in the v17 torsional excites state. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 180–184. DOI: https://doi.org/10.1016/j.jms.2008.02.018 11. GRONER, P., 1992. Large-amplitude motion tunneling parameters in effective rotational Hamiltonians from rotationinternal rotation theory. J. Mol. Spectrosc. vol. 156, is. 1, pp. 164–189. DOI: https://doi.org/10.1016/0022-2852(92)90101-S 12. GRONER, P., 1997. Effective rotational Hamiltonian for molecules with two periodic large-amplitude motions. J. Chem. Phys. vol. 107, is. 12, pp. 4483–4498. DOI: https://doi.org/10.1063/1.474810 13. ILYUSHIN, V. V. and HOUGEN, J. T., 2013. Afitting program for molecules with two equivalent methyl tops and C2v point-group symmetry at equilibrium: Application to existing microwave, millimeter, and sub-millimeter wave measurements of acetone. J. Mol. Spectrosc. vol. 289, pp. 41–49. DOI: https://doi.org/10.1016/j.jms.2013.05.012 14. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULÈS, L., 2012. Millimeter- and submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers. Radio Phys. Radio Astron. vol. 3, is 1, pp. 75–88. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100 15. LI-HONG, XU., FISHER, J., LEES, R. M., SHI, H. Y., HOUGEN, J. T., PEARSON, J. C., DROUIN, B. J., BLAKE, G. A. and BRAAKMAN, R., 2008. Torsion–rotation global analysis of the first three torsional states (vt=0, 1, 2) and terahertz database for methanol. J. Mol. Spectrosc. vol. 251, is. 1-2, pp. 305–313. DOI: https://doi.org/10.1016/j.jms.2008.03.017 16. GRONER, P., 2000. Experimental two-demensional torsional potential function for the methyl internal rotors in acetone. J. Mol. Struct. vol. 550-551, pp. 473–479. DOI: https://doi.org/10.1016/S0022-2860(00)00507-X 17. SMIRNOV, I. A., ALEKSEEV, E. A., ILYUSHIN, V. V., MARGULÈS, L., MOTIYENKO, R. A. and DROUIN, B. J., 2014. Spectroscopy of the ground, first and second excited torsional states of acetaldehyde from 0.05 to 1.6 THz. J. Mol. Spectrosc. vol. 295, pp. 44–50. DOI: https://doi.org/10.1016/j.jms.2013.11.006 18. ILYUSHIN, V. V., ENDRES, C. P., LEWEN, F., SCHLEMMER, S. and DROUIN, B. J., 2013. Submillimeter wave spectrum of acetic acid. J. Mol. Spectrosc. vol. 290, pp. 31–41. DOI: https://doi.org/10.1016/j.jms.2013.06.005 19. GRONER, P. and DURIG, J. R., 1977. Analysis of torsional spectra of molecules with two internal C3v rotors. II. Far infrared and low frequency Raman spectra of dimethylether isotopes. J. Chem. Phys. vol. 66, is. 5, pp. 1856–1874. DOI: https://doi.org/10.1063/1.434184 20. GRONER, P., 1981. Chapter 6. Internal rotation of molecules with two C3v rotors. In: Vibrational Spectra and Structure, vol. 9. Amsterdam: Elsevier, pp. 405–496.